279
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

CuO nanowhiskers: preparation, structure features, properties, and applications

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , , & show all
Pages 2126-2135 | Received 25 Apr 2018, Accepted 22 Jul 2018, Published online: 19 Sep 2018

References

  • Filipic G, Cvelbar U. Copper oxide nanowires: a review of growth. Nanotechnology. 2012;23(19):194001. doi: 10.1088/0957-4484/23/19/194001
  • Zhang Q, Zhang K, Xu D, et al. Cuo nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci. 2014;60:208–337. doi: 10.1016/j.pmatsci.2013.09.003
  • Jiang X, Herricks T, Xia Y. Cuo nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2002;2:1333–1338. doi: 10.1021/nl0257519
  • Huang LS, Yang SG, Li T, et al. Preparation of large-scale cupric oxide nanowires by thermal evaporation method. J Cryst Growth. 2004;260:130. doi: 10.1016/j.jcrysgro.2003.08.012
  • Rackauskas S, Nasibulin AG, Jiang H, et al. A novel method for metal oxide nanowire synthesis. Nanotechnology. 2009;20:165603-1–165603-8. doi: 10.1088/0957-4484/20/16/165603
  • Dorogov MV, Dovzhenko OA, Gryzunova NN, et al. New functional materials based on nanо- and micro-objects with developed surface. Acta Phys Pol A. 2015;128(4):503–505. doi: 10.12693/APhysPolA.128.503
  • Ghijsen J, Tjeng LH, van Elp J, et al. Electronic structure of Cu2O and CuO. Phys Rev B. 1988;38:11322–11330. doi: 10.1103/PhysRevB.38.11322
  • Kumar A, Srivastava AK, Tiwari P, et al. The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J Phys: Condens Matter. 2004;16(47):8531.
  • Xu CH, Woo CH, Shi SQ. Formation of CuO nanowires on Cu foil. Chem Phys Lett. 2004;399(1–3):62–66. doi: 10.1016/j.cplett.2004.10.005
  • Hansen BJ, Lu G, Chen J. Direct oxidation growth of CuO nanowires from copper-containing substrates. J Nanomater. 2008;2008:830474. doi: 10.1155/2008/830474
  • Gonçalves AMB, Campos LC, Ferlauto AS, et al. On the growth and electrical characterization of CuO nanowires by thermal oxidation. J Appl Phys. 2009;106:034303. doi: 10.1063/1.3187833
  • Cao M, Hu C, Yet al W. A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chem Eng (Cambridge). 2003;1:1884–1885. doi: 10.1039/b304505f
  • Gao X, Bao J, Pan G, et al. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J Phys Chem B. 2004;108:5547–5551. doi: 10.1021/jp037075k
  • Zhang Q, Chen H, Luo L, et al. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci. 2018;11:669–681. doi: 10.1039/C8EE00239H
  • Zhang Q, Wang J, Xu D, et al. Facile large-scale synthesis of vertically aligned CuO nanowires on nickel foam: growth mechanism and remarkable electrochemical performance. J Mater Chem A. 2014;2:3865–3874. doi: 10.1039/c3ta14767c
  • Wang J, Zhang Q, Li X, et al. Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy. 2014;6:19–26. doi: 10.1016/j.nanoen.2014.02.012
  • Cheng G, Wang SJ, Cheng K, et al. The current image of a single CuO nanowire studied by conductive atomic force microscopy. Appl Phys Lett. 2008;92:223116. doi: 10.1063/1.2938694
  • Zhang K, Rossi C, Tenailleau C, et al. Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate. Nanotechnology. 2007;18(27):275607. doi: 10.1088/0957-4484/18/27/275607
  • Sahoo S, Husale S, Colwill B, et al. Electric field directed self-assembly of cuprous oxide nanostructures for photon sensing. ACS Nano. 2009;3(12):3935–3944. doi: 10.1021/nn900915m
  • Farbod M, Narges MG, Iraj K. Fabrication of single phase CuO nanowires and effect of electric field on their growth and investigation of their photocatalytic properties. Ceram Int. 2014;40(1 Part A):517–521. doi: 10.1016/j.ceramint.2013.06.032
  • Cowley JM. Intensity anomalies in electron diffraction patterns of CuO. J Electrochem Soc. 1954;101(6):277–280. doi: 10.1149/1.2781245
  • Takagi R. Growth of oxide whiskers on metals at high temperature. J Phys Soc Jpn. 1957;12:1212–1218. doi: 10.1143/JPSJ.12.1212
  • Gulbransen EA, Copan TP, Andrew KF. Oxidation of copper between 250° and 450°C and the growth of CuO ‘whiskers’. J Electrochem Soc. 1961;108(2):119–123. doi: 10.1149/1.2428024
  • Ren S, Bai YF, Chen J, et al. Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation. Mater Lett. 2007;61(3):666–670. doi: 10.1016/j.matlet.2006.05.031
  • Nasibulin AG, Rackauskas S, Jiang H, et al. Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2009;2(5):373–379. doi: 10.1007/s12274-009-9036-5
  • Blech IA, Petroff PM, Tai KL, et al. Whisker growth in A1 thin films. J Cryst Growth. 1975;32(2):161–169. doi: 10.1016/0022-0248(76)90028-2
  • Hinode K, Homma Y. Whiskers grown on aluminum thin films during heat treatments. J Vac Sci Technol A. 1996;14:2570. doi: 10.1116/1.579983
  • Lee JW, Kang MG, Kim BS, et al. Single crystalline aluminum nanowires with ideal resistivity. Scr Mater. 2010;63(10):1009–1012. doi: 10.1016/j.scriptamat.2010.07.026
  • Tohmyoh H, Yasuda M, Saka M. Controlling Ag whisker growth using very thin metallic films. Scr Mater. 2010;63(3):289–292. doi: 10.1016/j.scriptamat.2010.04.013
  • Chen J, Wang K, Hartman L, et al. H2s detection by vertically aligned CuO nanowire array sensors. J Phys Chem. 2008;112(41):16017–16021.
  • Mema R, Yuan L, Du Q, et al. Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem Phys Lett. 2011;512:87–91. doi: 10.1016/j.cplett.2011.07.012
  • Yuan L, Zhou G. Enhanced CuO nanowire formation by thermal oxidation of roughened copper. J Electrochem Soc. 2012;159:205. doi: 10.1149/2.102204jes
  • Hansen BJ, Chan H, Lu J, et al. Short-circuit diffusion growth of long bi-crystal CuO nanowires. Chem Phys Lett. 2011;504(1-3):41–45. doi: 10.1016/j.cplett.2011.01.040
  • Huang YL, Chou MH, Wu SY, et al. Investigation of quantum-confinement effect in a single CuO nanowire. Jpn J Appl Phys. 2008;47(1):703–705. doi: 10.1143/JJAP.47.703
  • Rackauskas S, Jiang H, Wagner JB, et al. In situ study of noncatalytic metal oxide nanowire growth. Nano Lett. 2014;14(10):5810–5813. doi: 10.1021/nl502687s
  • Chen JTJ, Zhang F, Wang J, et al. Cuo nanowires synthesized by thermal oxidation route. J Alloys Compd. 2008;454:268–273. doi: 10.1016/j.jallcom.2006.12.032
  • Kaur M, Muthe KP, Despande SK, et al. Growth and branching of CuO nanowires by thermal oxidation of copper. J Cryst Growth. 2006;289:670–675. doi: 10.1016/j.jcrysgro.2005.11.111
  • Shao P, Deng S, Chen J, et al. Large-scale fabrication of ordered arrays of microcontainers and the restraint effect on growth of CuO nanowires. Nanoscale Res Lett. 2011;6:86. doi: 10.1186/1556-276X-6-86
  • Morin F. Copious whisker growth on copper scale. J Mater Sci Lett. 1983;2(7):383–384. doi: 10.1007/BF00726336
  • Zhong ML, Zeng DC, Liu ZW, et al. Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Mater. 2010;58:5926–5932. doi: 10.1016/j.actamat.2010.07.008
  • Li X, Zhang J, Yuan Y, et al. Effect of electric field on CuO nanoneedle growth during thermal oxidation and its growth mechanism. J Appl Phys. 2010;108:024308. doi: 10.1063/1.3460635
  • Yuan L, Wang Y, Mema R, et al. Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. 2011;59:2491–2500. doi: 10.1016/j.actamat.2010.12.052
  • Myasoedov AV, Kalmykov AE, Kirilenko DA, et al. 3rd International Multidisciplinary Microscopy and Microanalysis Congress; 2017, p. 143–148. DOI: 10.1007/978-3-319-46601-9_17
  • Aifantis KE, Kolesnikova AL, Romanov AE. Nucleation of misfit dislocations and deformation in core/shell nanowires. Philos Mag. 2007;87:4731–4757. doi: 10.1080/14786430701589350
  • Pilling NB, Bedworth RE. The oxidation of metals at high temperatures. J Inst Met. 1923;29:529–591.
  • Dorogov MV, Vikarchuk AA. Features of the evolution of the structure and morphology of the surface of icosahedral copper particles in the annealing process. JETP Lett. 2013;97(10):594–598. doi: 10.1134/S0021364013100111
  • Eshelby JD. A tentative theory of metallic whisker growth. Phys Rev. 1953;91:755–756. doi: 10.1103/PhysRev.91.755.2
  • Lindborg U. A model for the spontaneous growth of zinc, cadmium, and tin whiskers. Acta Metall. 1976;24:181–186. doi: 10.1016/0001-6160(76)90021-3
  • Abramova AN, Dorogov MV, Vlassov S, et al. Nanowhisker of copper oxide: fabrication technique, structural features and mechanical properties. Mater Phys Mech. 2014;19(1):88–95.
  • Yang M, He J. Fine tuning of the morphology of copper oxide nanostructures and their application in ambient degradation of methylene blue. J Colloid Interface Sci. 2011;355:15–22. doi: 10.1016/j.jcis.2010.11.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.