1,183
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Recrystallization behaviour and tensile properties of Al-added medium-Mn-steel at different deformation-annealing conditions

, , &
Pages 2054-2068 | Received 27 Sep 2018, Accepted 17 Dec 2018, Published online: 06 Jan 2019

References

  • Sarkar A, Sanyal S, Bandyopadhyay TK, et al. Enhanced strength-ductility relationship in a medium Mn high Al-alloyed multicomponent steel through thermomechanical processing. Mater Sci Eng A. 2017;703:205–213. doi: 10.1016/j.msea.2017.07.045
  • Kisku N, Sarkar A, Ray KK, et al. Development and characterization of a novel Ti-Modified high-Si medium-Mn steel possessing ultra-high strength and reasonable ductility after hot rolling. J Mater Eng Perform. 2018;27:4077–4089. doi: 10.1007/s11665-018-3480-x
  • Sarkar A, Bandhyopadhay TK. Effect of 8-13 wt-%Mn on the microstructural characterization of Fe-Mn-C steel. Int J Mater Sci. 2015;5:16–21. doi: 10.12783/ijmsci.2015.0501.03
  • Chen L, Zhao Y, Qin X. Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review. Acta Mater Sin. 2013;26:1–15.
  • Lee S, Cooman B. Effect of the intercritical annealing temperature on the mechanical properties of 10 Pct Mn multi-phase steel. Metall Mater Trans A. 2014;45:5009–5016. doi: 10.1007/s11661-014-2449-0
  • Sohn SS, Choi K, Kwak J, et al. Novel ferrite – austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms. Acta Mater. 2014;78:181–189. doi: 10.1016/j.actamat.2014.06.059
  • Lee D, Kim J, Lee S, et al. Microstructures and mechanical properties of Ti and Mo micro-alloyed medium Mn steel. Mater Sci Eng A. 2017;706:1–14. doi: 10.1016/j.msea.2017.08.110
  • Rana R, Liu C, Ray RK. Low-density low-carbon Fe-Al ferritic steels. Scr Mater. 2013;68:354–359. doi: 10.1016/j.scriptamat.2012.10.004
  • Kim H, Suh D-W, Kim NJ. Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties. Sci Technol Adv Mater. 2013;14:1–11. doi: 10.1088/1468-6996/14/1/014205
  • Abedi HR, Hanzaki AZ, Haghdadi N, et al. Substructure induced twinning in low density steel. Scr Mater. 2017;128:69–73. doi: 10.1016/j.scriptamat.2016.10.001
  • Raabe D, Springer H, Gutierrez-Urrutia I, et al. Alloy design, combinatorial synthesis, and microstructure-property relations for low-density Fe-Mn-Al-C auste-nitic steels. JOM. 2014;66:1845–1856. doi: 10.1007/s11837-014-1032-x
  • Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides. Mater Sci Tech. 2014;30:1099–1104. doi: 10.1179/1743284714Y.0000000515
  • Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. Scr Mater. 2013;68:343–347. doi: 10.1016/j.scriptamat.2012.08.038
  • Sarkar A, Sanyal S, Bandyopadhyay TK, et al. Influence of annealing parameters on phase evolution and recrystallization kinetics of a Mn-Al-Si alloyed duplex steel. Mater Charact. 2017;134:213–224. doi: 10.1016/j.matchar.2017.10.023
  • Zhang J, Raabe D, Tasan CC. Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics. Acta Mater. 2017;141:374–387. doi: 10.1016/j.actamat.2017.09.026
  • Lacerda JD, Cândido LC, Godefroid LB. Effect of volume fraction of phases and precipitates on the mechanical behavior of UNS S31803 duplex stainless steel. Int J Fatigue. 2015;74:81–87. doi: 10.1016/j.ijfatigue.2014.12.015
  • Raghavan V. Al-Fe-Mn (aluminium-iron-manganese). J. Phase Equilibria Diffus. 1994;28:371–373. doi: 10.1007/s11669-007-9096-8
  • Burton BP, Kattner UR. Al-Fe (Aluminum-Iron). In: H Okamoto, editor. Phase diagrams of binary iron alloys. Materials Park (OH): ASM International; 1993. p. 12–28.
  • Massalsky T, Okamoto H, Subramanian PR, et al. Binary alloy phase diagrams. Vol. 1. Materials Park (OH): ASM International; 1990.
  • Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry. Arch Civ Mech Eng. 2008;8:103–117. doi: 10.1016/S1644-9665(12)60197-6
  • Yanushkevich Z, Belyakov A, Kaibyshev R, et al. Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel. Mater Charact. 2016;112:180–187. doi: 10.1016/j.matchar.2015.12.021
  • Avner SH. Introduction to Physical Metallurgy. 2nd ed. New Delhi: Tata McGraw-Hill; 2008.
  • Naghizadeh M, Mirzadeh H. Microstructural evolutions during annealing of plastically deformed AISI 304 austenitic stainless steel: martensite reversion, grain refinement, recrystallization, and grain growth. Metall Mater Trans A. 2016;47:4210–4216. doi: 10.1007/s11661-016-3589-1
  • Wawszczak R, Baczmański A, Marciszko M, et al. Evolution of microstructure and residual stress during annealing of austenitic and ferritic steels. Mater Charact. 2016;112:238–251. doi: 10.1016/j.matchar.2015.12.019
  • Hwang SW, Ji JH, Lee EG, et al. Tensile deformation of a duplex Fe – 20Mn – 9Al – 0 .6C steel having the reduced specific weight. Mater Sci Eng A. 2011;528:5196–5203. doi: 10.1016/j.msea.2011.03.045
  • Mirzadeh H, Cabrera JM, Najafizadeh A, et al. EBSD study of a hot deformed austenitic stainless steel. Mater Sci Eng A. 2012;538:236–245. doi: 10.1016/j.msea.2012.01.037
  • Belyakov A, Kaibyshev R, Kimura Y, et al. Recrystallization mechanisms in severely deformed dual-phase stainless steel. Mater Sci Forum. 2010;638–642:1905–1910. doi: 10.4028/www.scientific.net/MSF.638-642.1905
  • Momeni A, Dehghani K. Hot working behavior of 2205 austenite – ferrite duplex stainless steel characterized by constitutive equations and processing maps. Mater Sci Eng A. 2011;528:1448–1454. doi: 10.1016/j.msea.2010.11.020
  • Haghdadi N, Cizek P, Beladi H, et al. A novel high-strain rate ferrite dynamic softening mechanism facilitated by the interphase in the austenite/ferrite microstructure. Acta Mater. 2017;126:44–57. doi: 10.1016/j.actamat.2016.12.045
  • Sanz L, Pereda B, López B. Analysis of the static recrystallization behaviour of Nb-Ti microalloyed steels including low strain levels. Mater Sci Forum. 2017;879:1170–1175. doi: 10.4028/www.scientific.net/MSF.879.1170
  • Duprez L, De CB, Akdut N. Deformation behaviour of duplex stainless steel during industrial hot rolling. Steel Res. 2002;73:531–538. doi: 10.1002/srin.200200024
  • Reick W, Pohl M, Padilha AF. Recrystallization-transformation combined reactions during annealing of a cold rolled ferritic-austenitic duplex stainless steel. ISIJ Int. 1998;38:567–571. doi: 10.2355/isijinternational.38.567
  • Wright SI, Nowell MM, Field DP. A review of strain analysis using electron backscatter diffraction. Microsc Microanal. 2011;17:316–329. doi: 10.1017/S1431927611000055
  • Mandal S, Jayalakshmi M, Bhaduri AK, et al. Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N). Metall Mater Trans A. 2014;45:5645–5656. doi: 10.1007/s11661-014-2480-1
  • Polkowski W, Jóźwik P, Bojar Z. EBSD and X-ray diffraction study on the recrystallization of cold rolled Ni3Al based intermetallic alloy. J Alloys Compd. 2014;614:226–233. doi: 10.1016/j.jallcom.2014.06.106
  • Liu YX, Lin YC, Li HB, et al. Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton model. Mater Sci Eng A. 2015;626:432–440. doi: 10.1016/j.msea.2014.12.092
  • Mandal S, Bhaduri AK, Subramanya Sarma V. A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel. Metall Mater Trans A. 2011;42:1062–1072. doi: 10.1007/s11661-010-0517-7
  • Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–184. doi: 10.1063/1.1750872
  • Momeni A, Dehghani K, Ebrahimi GR, et al. Modeling the flow curve characteristics of 410 martensitic stainless steel under hot working condition. Metall Mater Trans A. 2010;41:2898–2904. doi: 10.1007/s11661-010-0350-z
  • Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta. 1995;267:61–73. doi: 10.1016/0040-6031(95)02466-2
  • Lin YC, Chen M-S. Study of microstructural evolution during static recrystallization in a low alloy steel. J Mater Sci. 2009;44:835–842. doi: 10.1007/s10853-008-3120-1
  • Furu T, Marthinsen K, Nes E. Modelling recrystallisation. Mater Sci Tech. 1990;6:1093–1102. doi: 10.1179/mst.1990.6.11.1093
  • Lin FX, Zhang YB, Tao N, et al. Effect of heterogeneity on the recrystallization kinetics of nanocrystalline copper prepared by dynamic plastic deformation. Acta Mater. 2014;72:252–261. doi: 10.1016/j.actamat.2014.03.036
  • Torabinejad V, Zarei-Hanzaki A, Moemeni S. An analysis to the kinetics of austenite recrystallization in Fe-30Mn-5Al steel. Mater Manufact Process. 2013;28:36–41. doi: 10.1080/10426914.2012.681413
  • Hughes DA, Hansen N. The microstructural origin of work hardening stages. Acta Mater. 2018;148:374–383. doi: 10.1016/j.actamat.2018.02.002
  • Rollett AD, Kocks UF. A review of the stages of work hardening. Sol State Phenom. 1993;35–36:1–18. doi: 10.4028/www.scientific.net/SSP.35-36.1
  • Barbier D, Gey N, Allain S, et al. Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolution. Mater Sci Eng A. 2009;500:196–206. doi: 10.1016/j.msea.2008.09.031
  • Sohn SS, Song H, Suh BC, et al. Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization. Acta Mater. 2015;96:301–310. doi: 10.1016/j.actamat.2015.06.024
  • Kang S, Jung Y-S, Jun J-H, et al. Effect of recrystallization annealing temperature on carbide precipitation, microstructure and mechanical properties in Fe-18Mn-0.6C-1.5Al steel. Mater Sci Eng A. 2010;527:745–751. doi: 10.1016/j.msea.2009.08.048
  • Suwas S, Ray RK. Crystallographic texture of Materials. London: Springer; 2014.
  • Xie CL, Nakamachi E. Investigations of the formability of BCC steel sheets by using crystalline plasticity finite element analysis. Mater Des. 2002;23:59–68. doi: 10.1016/S0261-3069(01)00043-7
  • Huh MY, Engler O. Effect of intermediate annealing on texture, formability and ridging of 17%Cr ferritic stainless steel sheet. Mater Sci Eng A. 2001;308:74–87. doi: 10.1016/S0921-5093(00)01995-X
  • Lee S, Shin S, Kwon M, et al. Tensile properties of medium Mn steel with a bimodal UFG α+γ and coarse δ-ferrite microstructure. Metall Mater Trans A. 2017;48:1678–1700. doi: 10.1007/s11661-017-3979-z
  • Saeed-Akbari A, Imlau J, Prahl U, et al. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metall Mater Trans A. 2009;40:3076–3090. doi: 10.1007/s11661-009-0050-8
  • Zambrano O. Stacking fault energy maps of Fe-Mn-Al-C steels: effect of temperature, grain size and variations in compositions. J Eng Mater Technol. 2016;138:1–9. doi: 10.1115/1.4033632
  • Yoo JD, Park K-T. Microband-induced plasticity in a high Mn–Al–C light steel. Mater Sci Eng A. 2008;496:417–424. doi: 10.1016/j.msea.2008.05.042
  • Park J, Jo MC, Jeong HJ, et al. Interpretation of dynamic tensile behavior by austenite stability in ferrite-austenite duplex lightweight steels. Sci Report. 2017;7:1–14. doi: 10.1038/s41598-016-0028-x
  • Bleck W, Guo X, Ma Y. The TRIP effect and its application in cold formable sheet steels. Steel Res Int. 2017;88:1–21.
  • Zhu R, Li S, Song M, et al. Phase constitution effect on the ductility of low alloy multiphase transformation induced plasticity steels. Mater Sci Eng A. 2013;569:137–143. doi: 10.1016/j.msea.2013.01.051

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.