247
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

A comparison of the internal stresses in a transformation-induced plasticity-assisted steel and a twinning-induced plasticity steel

&
Pages 409-419 | Received 08 Aug 2018, Accepted 05 Jan 2019, Published online: 28 Jan 2019

References

  • Grässel O, Frommeyer G, Derder C, et al. Phase transformation and mechanical properties of Fe–Mn–Si–Al TRIP-steels. J Phys IV France. 1997;7(C5):383–388. doi: 10.1051/jp4:1997560
  • Grässel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–Al steels. Mater Sci Tech. 1998;14(12):1213–1217. doi: 10.1179/mst.1998.14.12.1213
  • Grässel O, Krüger L, Frommeyer G, et al. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development properties application. Int J Plasticity. 2000;16(10–11):1391–1409. doi: 10.1016/S0749-6419(00)00015-2
  • Bouaziz O, Allain S, Scott CP, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr Opin Solid St M Sci. 2011;15(4):141–168. doi: 10.1016/j.cossms.2011.04.002
  • Galán J, Samek L, Verleysen P, et al. Advanced high strength steels for automotive industry. Rev Metal. 2012;48(2):118–131. doi: 10.3989/revmetalm.1158
  • De Cooman BC, Estrin Y, Kyu Kim S. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283–362. doi: 10.1016/j.actamat.2017.06.046
  • Christian JW, Mahajan S. Deformation twinning. Prog Mater Sci. 1995;39(1-2):1–157. doi: 10.1016/0079-6425(94)00007-7
  • Krauss G. Martensite in steel: strength and structure. Mater Sci Eng A. 1999;273-275:40–57. doi: 10.1016/S0921-5093(99)00288-9
  • Tsakiris V, Edmonds DV. Martensite and deformation twinning in austenitic steels. Mater Sci Eng A. 1999;273-275:430–436. doi: 10.1016/S0921-5093(99)00322-6
  • Remy L. Kinetics of FCC deformation twinning and its relationship to stress-strain behaviour. Acta Metall. 1978;26(3):443–451. doi: 10.1016/0001-6160(78)90170-0
  • Allain S, Chateau J-P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater Sci Eng A. 2004;387-389:158–162. doi: 10.1016/j.msea.2004.01.059
  • Pierce DT, Jiménez JA, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ϵ-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Mater. 2014;68:238–253. doi: 10.1016/j.actamat.2014.01.001
  • Idrissi H, Renard K, Ryelandt L, et al. On the mechanism of mechanism of twin formation in FeMnC TWIP steel. Acta Mater. 2010;58:2464–2476. doi: 10.1016/j.actamat.2009.12.032
  • Idrissi H, Renard K, Schryvers D, et al. On the relationship between the twin internal structure and the work-hardening rate of TWIP steels. Scripta Mater. 2010;63:961–964. doi: 10.1016/j.scriptamat.2010.07.016
  • Gil Sevillano J. An alternative model for the strain hardening of FCC alloys that twin, validated for twinning-induced plasticity steel. Scripta Mater. 2009;60(5):336–339. doi: 10.1016/j.scriptamat.2008.10.035
  • Gil Sevillano J, de las Cuevas F. Internal stresses and the mechanism of work hardening in twinning-induced plasticity steels. Scripta Mater. 2012;66(12):978–981. doi: 10.1016/j.scriptamat.2012.02.019
  • Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scripta Mater. 2008;58(6):484–487. doi: 10.1016/j.scriptamat.2007.10.050
  • Gutierrez-Urrutia I, del Valle JA, Zaefferer S, et al. Study of internal stresses in a TWIP steel analyzing transient and permanent softening during reverse shear tests. J Mater Sci. 2010;45:6604–6610. doi: 10.1007/s10853-010-4750-7
  • de las Cuevas F, Gil Sevillano J. Loss of ductility due to decarburation and Mn depletion of a coarse-grained TWIP steel. Rev Metal. 2017;53(4):1–10. doi: 10.3989/revmetalm.109
  • de las Cuevas F, Reis M, Ferraiuolo A, et al. Kinetics of recrystallization and grain growth of cold rolled twip steel. Adv Mater Res. 2010;89-91:153–158.
  • de las Cuevas F, Aguilar C, Gil Sevillano J, et al. A further study of the kinetics of recrystallization and grain growth of cold rolled twip steel. Rev Metal. 2018;54(4):1–12. doi: 10.3989/revmetalm.131
  • Dumay A, Chateau J-P, Allain S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Mat Sci Eng A. 2008;483–484:184–187. doi: 10.1016/j.msea.2006.12.170
  • de las Cuevas F, Reis M, Ferraiuolo A, et al. Hall–Petch relationship of a TWIP steel. Key Eng Mater. 2010;423:147–152.
  • Allain S, Cugy P, Scott C, et al. The influence of plastic instabilities on the mechanical properties of a high-manganese austenitic FeMnC steel. Int J Mater Res. 2008;99(7):734–738. doi: 10.3139/146.101693
  • Lü Y, Hutchinson B, Molodov DA, et al. Effect of deformation and annealing on the formation and reversion of ϵ-martensite in an Fe–Mn–C alloy. Acta Mater. 2010;58(8):3079–3090. doi: 10.1016/j.actamat.2010.01.045
  • Remy L, Pineau A. Twinning and strain-induced F.C.C.-> H.C.P. transformation in the Fe–Mn–Cr–C system. Mater Sci Eng. 1977;28(1):99–107. doi: 10.1016/0025-5416(77)90093-3
  • Barbier D, Gey N, Allain S, et al. Analysis of the tensile behaviour of a TWIP steel based on the texture and microstructure evolutions. Mat Sci Eng A. 2009;500(1–2):196–206. doi: 10.1016/j.msea.2008.09.031
  • Dancette S, Delannay L, Renard K, et al. Crystal plasticity modelling of texture development and hardening in TWIP steel. Acta Mater. 2012;60(5):2135–2145. doi: 10.1016/j.actamat.2012.01.015
  • Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst. 1953;174:25–28.
  • Petch NJ. The fracture of metals. Prog Met Phys. 1954;5:1–324. doi: 10.1016/0502-8205(54)90003-9
  • Tian YZ, Bai Y, Zhao LJ, et al. A novel ultrafine-grained Fe–22Mn–0.6C TWIP steel with superior strength and ductility. Mater Charact. 2017;126:74–80. doi: 10.1016/j.matchar.2016.12.026
  • de las Cuevas F, Ferraiuolo A, Karjalainen LP, et al. Propiedades mecánicas a tracción de un acero TWIP a altas velocidades de deformación: relación de Hall–Petch. Rev Metal. 2014;50(4):1–8. doi: 10.3989/revmetalm.031
  • Ashby MF. Mechanisms of deformation and Fracture. Adv Appl Mech. 1983;23:117–177. doi: 10.1016/S0065-2156(08)70243-6
  • Di Schino A, Kenny JM. Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel. Mater Lett. 2003;57(21):3182–3185. doi: 10.1016/S0167-577X(03)00021-1
  • Gavriljuk VG, Berns H, Escher C, et al. Grain boundary strengthening in austenitic nitrogen steels. Mater Sci Eng A. 1999;271(1-2):14–21. doi: 10.1016/S0921-5093(99)00272-5
  • Wayman CM. The phenomenological theory of martensite crystallography: Interrelationships. Metall Mater Trans A. 1994;25(9):1787–1795. doi: 10.1007/BF02649029
  • Christian JW. Some comments on the Burgers and Bogers–Burgers transformation mechanisms and their relation to mathematical theories of martensite crystallography. J Less Common Met. 1972;28(1):67–74. doi: 10.1016/0022-5088(72)90169-5
  • Remy L. Kinetics of FCC deformation twinning and its relationship to stress-strain behaviour. Acta Metall. 1978;26(3):443–451. doi: 10.1016/0001-6160(78)90170-0
  • Nabarro FRN. Work hardening and dynamical recovery of F.C.C. metals in multiple glide. Acta Metall. 1989;37(6):1521–1546. doi: 10.1016/0001-6160(89)90122-3
  • Yan K, Carr DG, Callaghan MD, et al. Deformation mechanisms of twinning-induced plasticity steels: In situ synchrotron characterization and modeling. Scripta Mater. 2010;62:246–249. doi: 10.1016/j.scriptamat.2009.11.008
  • Liss KD, Yan K. Thermo-mechanical processing in a synchrotron beam. Mater Sci Eng A. 2010;528:11–27. doi: 10.1016/j.msea.2010.06.017
  • Hamdi F, Asgari S. Evaluation of the role of deformation twinning in work hardening behavior of face-centered-cubic polycrystals. Metall Mater Trans A. 2008;39A:294–303. doi: 10.1007/s11661-007-9356-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.