69
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced coercivity of NiFe1–xDyxCrO4 ferrites synthesised by glycine-nitrate combustion method

, , , &
Pages 448-455 | Received 13 Jul 2018, Accepted 10 Jan 2019, Published online: 31 Jan 2019

References

  • Goldman A. Modem ferrite technology. 2nd ed. Berlin: Springer; 2006.
  • Shirsath SE, Toksha BG, Jadhav KM. Structural and magnetic properties of In3+ substituted NiFe2O4. Mater Chem Phys. 2009;117(1):163–168. doi: 10.1016/j.matchemphys.2009.05.027
  • Mitra S, Mandal K, Choi ES. Dynamic magnetic properties of NiFe2O4 nanoparticles embedded in SiO matrix. IEEE Trans Magn. 2008;44(11):2974–2977. doi: 10.1109/TMAG.2008.2002477
  • Lyubutin IS, Lin C, Starchikov SS, et al. Structural, magnetic, and electronic properties of mixed spinel NiFe2−xCrxO4 nanoparticles synthesized by chemical combustion. Inorg Chem. 2017;56(20):12469–12475. doi: 10.1021/acs.inorgchem.7b01935
  • Winell S, Amcoff Ö, Ericsson T. Cation ordering in NiFe2-xCrxO4 -spinels studied by Mössbauer spectroscopy in external fields. Phys Status Solidi B. 2008;245(8):1635–1640. doi: 10.1002/pssb.200743507
  • Kumar P, Sharma SK, Knobel M, et al. Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique. J Alloys Compd. 2010;508(1):115–118. doi: 10.1016/j.jallcom.2010.08.007
  • Bharathi KK, Ramana CV. Improve delectrical and dielectrical properties of La-doped Co ferrite. J Met Res. 2011;26(4):584–591. doi: 10.1557/jmr.2010.37
  • Rezlescu N, Rezlescu E, Pasnicu C, et al. Effects of the rare-earth ions on some properties of a nickel–zinc ferrite. J Phys Condens Matter. 1994;6(29):5707–5716. doi: 10.1088/0953-8984/6/29/013
  • Bharathi KK, Chelvane JA, Markandeyulu G. Magnetoelectric properties of Gd and Nd-doped nickel ferrite. J Magn Magn Mater. 2009;321(22):3677–3680. doi: 10.1016/j.jmmm.2009.07.011
  • Peng Z, Fu X, Ge H, et al. Effect of Pr3+ doping on magnetic and dielectric properties of Ni–Zn ferrites by one-step synthesis. J Magn Magn Mater. 2011;323(20):2513–2518. doi: 10.1016/j.jmmm.2011.05.033
  • Cheng F, Liao C, Kuang J, et al. Nanostructure magneto-optical thin films of rare earth (RE = Gd, Tb, Dy) doped cobalt spinel by sol–gel synthesis. J Appl Phys. 1999;85(5):2782–2786. doi: 10.1063/1.369594
  • Sijo AK. Magnetic and structural properties of CoCrxFe2−xO4 spinels prepared by solution self combustion method. Ceram Int. 2017;43(2):2288–2290. doi: 10.1016/j.ceramint.2016.11.010
  • Gabal MA, Angari YA. Effect of chromium ion substitution on the electromagnetic properties of nickel ferrite. Mater Chem Phys. 2009;118(1):153–160. doi: 10.1016/j.matchemphys.2009.07.025
  • Lee SH, Yoon SJ, Lee GJ, et al. Electrical and magnetic properties of NiCrxFe2−xO4 spinel (0 ≤ x ≤ 0.6). Mater Chem Phys. 1999;61(2):147–152. doi: 10.1016/S0254-0584(99)00136-4
  • Patange SM, Shirsath SE, Toksha BG, et al. Electrical and magnetic properties of Cr3+ substituted nanocrystalline nickel ferrite. J Appl Phys. 2009;106(2):023914. doi: 10.1063/1.3176504
  • Jain SR, Adiga KC. A new approach to thermochemical calculations of condensed fuel–oxidizer mixtures. Combust Flame. 1981;40:71–79. doi: 10.1016/0010-2180(81)90111-5
  • Singh S, Singh D. Synthesis of LaFeO3 nanopowders by glycine–nitrate process without using any solvent: effect of temperature. Monatsh Chem. 2017;148(5):879–886. doi: 10.1007/s00706-016-1818-3
  • Hwang CC, Tsai JS, Huang TH. Combustion synthesis of Ni–Zn ferrite by using glycine and metal nitrates investigations of precursor homogeneity, product reproducibility and reaction mechanism. Mater Chem Phys. 2005;93(2-3):330–336. doi: 10.1016/j.matchemphys.2005.03.056
  • Larson AC, Dreele RBV. General structure analysis system (GSAS). Los Alamos: National Laboratory Report LAUR; 2004; 86.
  • Verma S, Chand J, Singh M. Effect of In3+ ions doping on the structural and magnetic properties of Mg0.2Mn0.5Ni0.3InxFe2−xO4 spinel ferrites. J Magn Magn Mater. 2012;324(20):3252–3260. doi: 10.1016/j.jmmm.2012.04.053
  • Lin Q, Yuan G, He Y, et al. The influence of La-substituted Cu0.5Co0.5Fe2O4 nanoparticles on its structural and magnetic properties. Mater Des. 2015;78:80–84. doi: 10.1016/j.matdes.2015.04.029
  • Heiba ZK, Mohamed MB, Arda L, et al. Cation distribution correlated with magnetic properties of nanocrystalline gadolinium substituted nickel ferrite. J Magn Magn Mater. 2015;391:195–202. doi: 10.1016/j.jmmm.2015.05.003
  • Klug HP, Alexander LE. X-ray diffraction procedures; for polycrystalline and amorphous materials. NY: John Wiley and Sons Inc; 1954.
  • Franco JA, Silva MS. High temperature magnetic properties of magnesium ferrite nanoparticles. J Appl Phys. 2011;109:07B505. doi: 10.1063/1.3536790
  • Kahn ML, Zhang ZJ. Synthesis and magnetic properties of CoFe2O4 spinel ferrite nanoparticles doped with lanthanide ions. Appl Phys Lett. 2001;78:3651–3653. doi: 10.1063/1.1377621
  • Sodaee T, Ghasemi A, Paimozd E. Remarkable influence of terbium cations on the magnetic properties of cobalt ferrite nanoparticles. Mater Phys Mech. 2013;17(1):11–16.
  • Sodaee T, Ghasemi A, Paimozd E, et al. An approach for enhancement of saturation magnetization in cobalt ferrite nanoparticles by incorporation of terbium cation. J Elect Mater. 2013;42(9):2771–2783. doi: 10.1007/s11664-013-2656-2
  • Nellis WJ, Legvold S. Thermal conductivities and Lorenz functions of gadolinium, terbium, and holmium single crystals. Phys Rev. 1969;180(2):581–590. doi: 10.1103/PhysRev.180.581
  • Pant RP, Arora M, Kaur B, et al. Finite size effect on Gd3+ doped CoGdxFe2-xO4 (0.0≤x≤0.5). J Magn Magn Mater. 2010;322(22):3688–3691. doi: 10.1016/j.jmmm.2010.07.026
  • Hankare PP, Jadhav SD, Sankpa UB, et al. Synthesis, characterization and effect of sintering temperature on magnetic properties of MgNi ferrite prepared by co-precipitation method. J Alloys Compds. 2009;475(1–2):926–929. doi: 10.1016/j.jallcom.2008.08.082
  • Puli VS, Adireddy S, Ramana CV. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite. J Alloys Compd. 2015;644:470–475. doi: 10.1016/j.jallcom.2015.05.031
  • Kambale RC, Shaikh PA, Kamble SS, et al. Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J Alloys Compd. 2009;478(1–2):599–603. doi: 10.1016/j.jallcom.2008.11.101
  • Figgis BN, Hitchman MA. Ligand field theory and its applications. New York: Wiley-VCH; 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.