224
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Microstructure of the oxide ceramics/Inconel 713C interface

ORCID Icon, , & ORCID Icon
Pages 456-461 | Received 19 Sep 2018, Accepted 11 Jan 2019, Published online: 25 Jan 2019

References

  • Williams JC, Starke EA, Jr. Progress in structural ?>materials for aerospace systems. Acta Mater. 2003;51:5775–5799. doi: 10.1016/j.actamat.2003.08.023
  • Gurrappa I, Rao AS. Thermal barrier coatings for enhanced efficiency of gas turbine engines. Surf Coat Technol. 2006;201:3016–3029. doi: 10.1016/j.surfcoat.2006.06.026
  • Cowles BA. High cycle fatigue in aircraft gas turbines—an industry perspective. Int J Fract. 1996;80:147–163. doi: 10.1007/BF00012667
  • Zielińska M, Kubiak K, Sieniawski J. Surface modification, microstructure and mechanical properties of investment cast superalloys. J Achiev Mater Manuf Eng. 2009;35:55–62.
  • Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propul Power. 2006;22:361–374. doi: 10.2514/1.18239
  • Nützel R, Affeldt E, Göken M. Damage evolution during thermo-mechanical fatigue of a coated monocrystalline nickel-base superalloy. Int J Fatigue. 2008;30:313–317. doi: 10.1016/j.ijfatigue.2007.01.045
  • Gell M, Duhl DN, Giamei AF. The development of single crystal superalloy turbine blades. In: 1980, superalloys. Metals Park (OH): American Society for Metals; 1980. p. 205–214. ISBN 0871701022.
  • Cygan R, Sobczak N, Suchy JS. Interaction: ceramic mould – metal in nickel superalloy castings. Int Foundry Res/Giessereiforschung. 2009;61(3):1–7.
  • Konrad CH, Brunner M, Kyrgyzbaev K, et al. Determination of heat transfer coefficient and ceramic mold material parameters for alloy IN738LC investment castings. J Mater Process Technol. 2011;211:181–186. doi: 10.1016/j.jmatprotec.2010.08.031
  • Zhou XB, De Hosson JTM. Reactive wetting of liquid metals on ceramic substrates. Acta Mater. 1996;44:421–426. doi: 10.1016/1359-6454(95)00235-9
  • Binczyk F, Śleziona J, Michalska J. Analysis of thermal-chemical interactions at ceramic mould – molten nickel alloy interface. Arch Foundry Eng. 2010;10(4):5–8.
  • Binczyk F, Śleziona J, Kościelna A. Effect of modification and cooling rate on the macrostructure of IN-713C alloy. Arch Foundry Eng. 2009;9(3):13–16.
  • Yuan C, Cheng X, Holt GS, et al. Investment casting of Ti–46Al–8Nb–1B alloy using moulds with CaO-stabilized zirconia face coat at various mould pre-heat temperatures. Ceram Int. 2015;41:4129–4139. doi: 10.1016/j.ceramint.2014.11.109
  • Pirowski Z. Evaluation of high-temperature physico-chemical interactions between the H282Alloy melt and ceramic material of the crucible. Arch Foundry Eng. 2014;14(4):83–90. doi: 10.2478/afe-2014-0091
  • Yao J, Tang D, Liu X, et al. Interaction between two Ni-base alloys and ceramic moulds. Mater Sci Forum. 2013;747-748:765–771. doi: 10.4028/www.scientific.net/MSF.747-748.765
  • Szeliga D, Kubiak K, Ziaja W, et al. Investigation of casting–ceramic shell mold interface thermal resistance during solidification process of nickel based superalloy. Exp Therm Fluid Sci. 2017;87:149–160. doi: 10.1016/j.expthermflusci.2017.04.024
  • Jarvais EA, Carter EA. Importance of open-shell effects in adhesion at metal-ceramic interfaces. Phys Rev B. 2002;66:100103(1-4).
  • Loshchinin YV, Folomeikin YI, Rykova TP, et al. Thermophysical properties of ceramic materials of molds and cores for casting the heat-resistant alloy-based blades of gas-turbine engines, inorg. Mater Appl Res. 2014;5(4):407–412. doi: 10.1134/S2075113314040303
  • Li J, Zhang H, Gao M, et al. High-temperature wettability and interactions between Y-containing Ni-based alloys and various oxide ceramics. Mater. 2018;11(749):1–14.
  • Chen X, Zhou Y, Jin T, et al. Effect of C and Hf contents on the interface reactions and wettability between a Ni3Al-based superalloy and ceramic mould material. J Mater Sci Technol. 2016;32:177–181. doi: 10.1016/j.jmst.2015.11.007
  • Verhiest K, Mullens S, Paul J, et al. Experimental study on the contact angle formation of solidified iron–chromium droplets onto yttria ceramic substrates for the yttria/ferrous alloy system with variable chromium content. Ceram Int. 2014;40:2187–2200. doi: 10.1016/j.ceramint.2013.07.137
  • Yuan C, Withey PA, Blackburn S. Effect of incorporation of zirconia layer upon physical and mechanical properties of investment casting ceramic shell. Mater Sci Technol. 2013;29:30–35. doi: 10.1179/1743284712Y.0000000076
  • Joshl A, Chou TC, Wadsworth J. High temperature interactions of metallic matrices with ceramic reinforcements. Lockheed: Palo Alto Research Laboratory; 1991; (AD-A244;026).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.