756
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Grain boundary engineering for improving stress corrosion cracking of 304 stainless steel

ORCID Icon, , , , , & show all
Pages 477-487 | Received 18 Oct 2018, Accepted 13 Jan 2019, Published online: 28 Jan 2019

References

  • Zinkle SJ, Was GS. Materials challenges in nuclear energy. Acta Mater. 2013;61(3):735–758. doi: 10.1016/j.actamat.2012.11.004
  • Bi HY, Kokawa H, Wang ZJ, et al. Suppression of chromium depletion by grain boundary structural change during twin-induced grain boundary engineering of 304 stainless steel. Scripta Mater. 2003;49(3):219–223. doi: 10.1016/S1359-6462(03)00261-6
  • Telang A, Gill AS, Zweiacker K, et al. Effect of thermo-mechanical processing on sensitization and corrosion in alloy 600 studied by SEM- and TEM-based diffraction and orientation imaging techniques. J Nucl Mater. 2018;505:276–288. doi: 10.1016/j.jnucmat.2017.07.053
  • Ford FP. Quantitative prediction of environmentally assisted cracking. Corrosion. 1996;52(5):375–395. doi: 10.5006/1.3292125
  • Saito K, Kuniya J. Mechanochemical model to predict stress corrosion crack growth of stainless steel in high temperature water. Corros Sci. 2001;43(9):1751–1766. doi: 10.1016/S0010-938X(00)00173-6
  • Kuang WJ, Song M, Was GS. Insights into the stress corrosion cracking of solution annealed alloy 690 in simulated pressurized water reactor primary water under dynamic straining. Acta Mater. 2018;151:321–333. doi: 10.1016/j.actamat.2018.04.002
  • Moss T, Kuang WJ, Was GS. Stress corrosion crack initiation in alloy 690 in high temperature water. Curr Opin Solid State Mater Sci. 2018;22(1):16–25. doi: 10.1016/j.cossms.2018.02.001
  • Watanabe T. Approach to grain boundary design for strong and ductile polycrystals. Res Mech. 1984;11(1):47–84.
  • Lin P, Palumbo G, Erb U, et al. Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600. Scripta Metall. Mater. 1995;33(9):1387–1392. doi: 10.1016/0956-716X(95)00420-Z
  • Gertsman VY, Bruemmer SM. Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys. Acta Mater. 2001;49(9):1589–1598. doi: 10.1016/S1359-6454(01)00064-7
  • West EA, Was GS. IGSCC of grain boundary engineered 316L and 690 in supercritical water. J Nucl Mater 2009;392(2):264–271. doi: 10.1016/j.jnucmat.2009.03.008
  • Telang A, Gill AS, Kumar M, et al. Iterative thermomechanical processing of alloy 600 for improved resistance to corrosion and stress corrosion cracking. Acta Mater. 2016;113:180–193. doi: 10.1016/j.actamat.2016.05.009
  • Liu T, Xia S, Bai Q, et al. Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water. J Nucl Mater. 2018;498:290–299. doi: 10.1016/j.jnucmat.2017.10.004
  • Kobayashi S, Kobayashi R, Watanabe T. Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel. Acta Mater. 2016;102:397–405. doi: 10.1016/j.actamat.2015.08.075
  • Shi F, Tian PC, Jia N, et al. Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization. Corros Sci. 2016;107:49–59. doi: 10.1016/j.corsci.2016.02.019
  • Xia S, Li H, Liu TG, et al. Appling grain boundary engineering to alloy 690 tube for enhancing intergranular corrosion resistance. J Nucl Mater. 2011;416(3):303–310. doi: 10.1016/j.jnucmat.2011.06.017
  • Alexandreanu B, Sencer BH, Thaveeprungsriporn V, et al. The effect of grain boundary character distribution on the high temperature deformation behavior of Ni–16Cr–9Fe alloys. Acta Mater. 2003;51(13):3831–3848. doi: 10.1016/S1359-6454(03)00207-6
  • Rahimi S, Engelberg DL, Marrow TJ. A new approach for DL-EPR testing of thermo-mechanically processed austenitic stainless steel. Corros Sci. 2011;53(12):4213–4222. doi: 10.1016/j.corsci.2011.08.033
  • Zhang Z, Xia S, Cao W, et al. Effects of grain boundary character on intergranular stress corrosion cracking initiation in 316 stainless steel. Acta Metall Sin. 2016;52(3):313–319.
  • Randle V. The role of the coincidence site lattice in grain boundary engineering. London: Cambridge University Press; 1996.
  • Fu CT, Wang YL, Chu XW, et al. Grain boundary engineering for control of tellurium diffusion in GH3535 alloy. J Nucl Mater. 2017;497:76–83. doi: 10.1016/j.jnucmat.2017.10.052
  • Wang X, Kurosawa K, Huang M, et al. Control of precipitation behaviour of Hastelloy-X through grain boundary engineering. Mater Sci Technol. 2017;33(17):2078–2085. doi: 10.1080/02670836.2017.1345823
  • Kwon YJ, Seo HJ, Kim JN, et al. Effect of grain boundary engineering on hydrogen embrittlement in Fe-Mn-C TWIP steel at various strain rates. Corros Sci. 2018;142:213–221. doi: 10.1016/j.corsci.2018.07.028
  • Randle V. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Mater. 1999;47(15–16):4187–4196. doi: 10.1016/S1359-6454(99)00277-3
  • Kumar M, King WE, Schwartz AJ. Modifications to the microstructural topology in f.c.c. materials through thermomechanical processing. Acta Mater. 2000;48(9):2081–2091. doi: 10.1016/S1359-6454(00)00045-8
  • Shimada M, Kokawa H, Wang ZJ, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering. Acta Mater. 2002;50(9):2331–2341. doi: 10.1016/S1359-6454(02)00064-2
  • Michiuchi M, Kokawa H, Wang ZJ, et al. Twin-induced grain boundary engineering for 316 austenitic stainless steel. Acta Mater. 2006;54(19):5179–5184. doi: 10.1016/j.actamat.2006.06.030
  • Tan L, Allen TR, Busby JT. Grain boundary engineering for structure materials of nuclear reactors. J Nucl Mater. 2013;441(1–3):661–666. doi: 10.1016/j.jnucmat.2013.03.050
  • Liu TG, Xia S, Li H, et al. The highly twinned grain boundary network formation during grain boundary engineering. Mater Lett. 2014;133:97–100. doi: 10.1016/j.matlet.2014.06.166
  • Randle V, Jones R. Grain boundary plane distributions and single-step versus multiple-step grain boundary engineering. Mater Sci Eng A. 2009;524(1–2):134–142. doi: 10.1016/j.msea.2009.06.018
  • Kumar M, Schwartz AJ, King WE. Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials. Acta Mater. 2002;50(10):2599–2612. doi: 10.1016/S1359-6454(02)00090-3
  • Liu T, Xia S, Du D, et al. Grain boundary engineering of large-size 316 stainless steel via warm-rolling for improving resistance to intergranular attack. Mater Lett. 2019;234:201–204. doi: 10.1016/j.matlet.2018.09.111
  • Randle V. Twinning-related grain boundary engineering. Acta Mater. 2004;52(14):4067–4081. doi: 10.1016/j.actamat.2004.05.031
  • Bober DB, Lind J, Mulay RP, et al. The formation and characterization of large twin related domains. Acta Mater. 2017;129:500–509. doi: 10.1016/j.actamat.2017.02.051
  • Liu T, Xia S, Zhou B, et al. Three-dimensional characteristics of the grain boundary networks of conventional and grain boundary engineered 316L stainless steel. Mater Charact. 2017;133:60–69. doi: 10.1016/j.matchar.2017.09.026
  • Lind J, Li SF, Kumar M. Twin related domains in 3D microstructures of conventionally processed and grain boundary engineered materials. Acta Mater. 2016;114:43–53. doi: 10.1016/j.actamat.2016.03.002
  • Gertsman VY, Henager CH. Grain boundary junctions in microstructure generated by multiple twinning. Interface Sci. 2003;11(4):403–415. doi: 10.1023/A:1026191810431
  • Barr CM, Leff AC, Demott RW, et al. Unraveling the origin of twin related domains and grain boundary evolution during grain boundary engineering. Acta Mater. 2018;144:281–291. doi: 10.1016/j.actamat.2017.10.007
  • Brandon DG. The structure of high-angle grain boundaries. Acta Metall. 1966;14(11):1479–1484. doi: 10.1016/0001-6160(66)90168-4
  • Mahajan S, Pande CS, Imam MA, et al. Formation of annealing twins in f.c.c. crystals. Acta Mater. 1997;45(6):2633–2638. doi: 10.1016/S1359-6454(96)00336-9
  • Gleiter H. The formation of annealing twins. Acta Metall. 1969;17(12):1421–1428. doi: 10.1016/0001-6160(69)90004-2
  • Cao Y, Di HS. Grain boundary character distribution during the post-deformation recrystallization of Incoloy 800H at elevated temperature. Mater Lett. 2016;163:24–27. doi: 10.1016/j.matlet.2015.10.034
  • Field DP, Bradford LT, Nowell MM, et al. The role of annealing twins during recrystallization of Cu. Acta Mater. 2007;55(12):4233–4241. doi: 10.1016/j.actamat.2007.03.021
  • Haasen P. How are new orientations generated during primary recrystallization? MTA. 1993;24(5):1001–1015. doi: 10.1007/BF02657231
  • Liu TG, Xia S, Li H, et al. Effect of initial grain sizes on the grain boundary network during grain boundary engineering in alloy 690. J Mater Res. 2013;28(9):1165–1176. doi: 10.1557/jmr.2013.37
  • Zhuo Z, Xia S, Bai Q, et al. The effect of grain boundary character distribution on the mechanical properties at different strain rates of a 316L stainless steel. J Mater Sci. 2018;53(4):2844–2858. doi: 10.1007/s10853-017-1695-0
  • Randle V, Coleman M. A study of low-strain and medium-strain grain boundary engineering. Acta Mater. 2009;57(11):3410–3421. doi: 10.1016/j.actamat.2009.04.002
  • Engelberg DL, Humphreys FJ, Marrow TJ. The influence of low-strain thermo-mechanical processing on grain boundary network characteristics in type 304 austenitic stainless steel. J Microsc. 2008;230(3):435–444. doi: 10.1111/j.1365-2818.2008.02003.x
  • Marrow TJ, Babout L, Jivkov AP, et al. Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel. J Nucl Mater. 2006;352(1–3):62–74. doi: 10.1016/j.jnucmat.2006.02.042
  • Staehle RW. Quantitative micro-nano approach to SCC mechanism and prediction. TMS Fifteenth International Conference on Environment Degradation in Nuclear Power System-Water Reactors, North Oaks; 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.