1,381
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Solute segregation effect on grain boundary migration and Hall–Petch relationship in CrMnFeCoNi high-entropy alloy

ORCID Icon, , ORCID Icon, , , , & show all
Pages 500-508 | Received 06 Aug 2018, Accepted 10 Jan 2019, Published online: 25 Jan 2019

References

  • Hong S, Lee J, Park KS, et al. Effects of boron addition on tensile and Charpy impact properties in high-phosphorous steels. Mater Sci Eng A. 2014;589(1):165–173.
  • Karlsson L, Nordén H, Odelius H. Overview no. 63 Non-equilibrium grain boundary segregation of boron in austenitic stainless steel—IV. Precipitation behaviour and distribution of elements at grain boundaries. Acta Metall. 1988;36(1):35–48.
  • Shen XP, Priestner R. Effect of boron on the microstructure and tensile properties of dual-phase steel. Metall Trans A. 1990;21(9):2547–2553.
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375-377:213–218.
  • Lu ZP, Wang H, Chen MW, et al. An assessment on the future development of high-entropy alloys: summary from a recent workshop. Intermetallics. 2015;66:67–76.
  • He F, Wang Z, Wu Q, et al. Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scr Mater. 2017;131:42–46.
  • He F, Wang Z, Wu Q, et al. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scr Mater. 2017;126:15–19.
  • Lu Y, Gao X, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017;124:143–150.
  • Senkov ON, Miller JD, Miracle DB, et al. Nat Commun. 2014;6:6529.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng., A. 2004;375-377(1):213–218.
  • Wu Z, Bei H, Pharr GM, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014;81:428–441.
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153–1158.
  • Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61(15):5743–5755.
  • Salishchev GA, Tikhonovsky MA, Shaysultanov DG, et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J Alloys Compd. 2014;591(5):11–21.
  • Laurent-Brocq M, Akhatova A, Perrière L, et al. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy. Acta Mater. 2015;88:355–365.
  • Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloys. Intermetallics. 2010;18(9):1758–1765.
  • Yao HW, Qiao JW, Gao MC, et al. NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling. Mater Sci Eng A. 2016;674:203–211.
  • Salishchev GA, Tikhonovsky MA, Shaysultanov DG, et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J Alloys Compd. 2014;591:11–21.
  • Yao HW, Qiao JW, Gao MC, et al. NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling. Mater Sci Eng A. 2016;674:203–211.
  • Yao JQ, Liu XW, Gao N, et al. Phase stability of a ductile single-phase BCC Hf 0.5 Nb 0.5 Ta 0.5 Ti 1.5 Zr refractory high-entropy alloy. Intermetallics. 2018;98:79–88.
  • Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics. 2014;46(3):131–140.
  • Laplanche G, Horst O, Otto F, et al. Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing. J Alloys Compd. 2015;647:548–557.
  • Laplanche G, Gadaud P, Bärsch C, et al. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. J Alloys Compd. 2018;746:244–255.
  • Laplanche G, Gadaud P, Horst O, et al. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J Alloys Compd. 2015;623:348–353.
  • Thurston KVS, Gludovatz B, Hohenwarter A, et al. Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics. 2017;88:65–72.
  • Górecki K, Bala P, Cios G, et al. The influence of cooling rate during crystallization on the effective partitioning coefficient in high-entropy alloys from Al-Ti-Co-Ni-Fe system. Metall Mater Trans A. 2016;47(7):3257–3262.
  • Otto F, Hanold NL, George EP. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries. Intermetallics. 2014;54:39–48.
  • Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 2015;96:258–268.
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19(5):698–706.
  • Yao MJ, Pradeep KG, Tasan CC, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr Mater. 2014;72-73(1):5–8.
  • Deng Y, Tasan CC, Pradeep KG, et al. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 2015;94:124–133.
  • Jo MC, Lee H, Zargaran A, et al. Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel. Mater Sci Eng A. 2018;737:69–76.
  • Grange RA. Effect of microstructural banding in steel. Metall Trans. 1971;2(2):417–426.
  • Rivera-Díaz-Del-Castillo PEJ, Van Der Zwaag S, Sietsma J. A model for ferrite/pearlite band formation and prevention in steels. Metall Mater Trans A. 2004;35(2):425–433.
  • Ni Z, Sun Y, Xue F, et al. Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate. Mater Des. 2011;32(3):1462–1467.
  • Nioi M, Celotto S, Pinna C, et al. Surface defect evolution in hot rolling of high-Si electrical steels. J Mater Process Technol. 2017;249:302–312.
  • Liu WH, Wu Y, He JY, et al. Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr Mater. 2013;68(7):526–529.
  • Otto F, Hanold NL, George EP. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries. Intermetallics. 2014;54(18):39–48.
  • Bhattacharjee PP, Sathiaraj GD, Zaid M, et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J Alloys Compd. 2014;587(7):544–552.
  • Laplanche G, Kostka A, Horst OM, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2016;118:152–163.
  • Otto F, Dlouhý A, Pradeep KG, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 2016;112:40–52.
  • Li J, Saimoto S. The role of solute segregation and precipitation at dislocations to enhance continuous recrystallization. Mater Sci Eng A. 1997;234-236(5):1011–1014.
  • Suehiro M, Liu ZK, Ågren J. Effect of niobium on massive transformation in ultra low carbon steels: a solute drag treatment. Acta Mater. 1996;44(10):4241–4251.
  • Suehiro M, Liu ZK, Ågren J. A mathematical model for the solute drag effect on recrystallization. Metall Mater Trans. A. 1998;29(3):1029–1034.
  • Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61(13):4887–4897.
  • Ma N, Dregia SA, Wang Y. Solute segregation transition and drag force on grain boundaries. Acta Mater. 2003;51(13):3687–3700.
  • Svoboda J, Fischer FD, Leindl M. Transient solute drag in migrating grain boundaries. Acta Mater. 2011;59(17):6556–6562.
  • Svoboda J, Fischer FD, Gamsjäger E. Influence of solute segregation and drag on properties of migrating interfaces. Acta Mater. 2002;50(5):967–977.
  • J. W. Cahn, The impurity-drag effect in grain boundary motion. Acta Metall. 1962, 10(9), 789-798.
  • Patriarca L, Ojha A, Sehitoglu H, et al. Slip nucleation in single crystal FeNiCoCrMn high entropy alloy. Scr Mater. 2016;112:54–57.
  • Abuzaid W, Sehitoglu H. Critical resolved shear stress for slip and twin nucleation in single crystalline FeNiCoCrMn high entropy alloy. Mater Charact. 2017;129:288–299.
  • Chen Q, Liu XY, Biner SB. Solute and dislocation junction interactions. Acta Mater. 2008;56(13):2937–2947.
  • Hu SY, Li YL, Zheng YX, et al. Effect of solutes on dislocation motion —a phase-field simulation. Int J Plast. 2004;20(3):403–425.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.