605
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Austenite stabilisation by two step partitioning of manganese and carbon in a Mn-TRIP steel

ORCID Icon, , , , , & ORCID Icon show all
Pages 2084-2091 | Received 30 Jul 2018, Accepted 16 Jan 2019, Published online: 01 Feb 2019

References

  • Suh D-W, Kim S-J. Medium Mn transformation-induced plasticity steels: recent progress and challenges. Scripta Mater. 2017;126:63–67. doi: 10.1016/j.scriptamat.2016.07.013
  • Cao WQ, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by ART-annealing. Mater Sci Eng A. 2011;528(22–23):6661–6666. doi: 10.1016/j.msea.2011.05.039
  • Shi J, Sun X, Wang M, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scripta Mater. 2010;63(8):815–818. doi: 10.1016/j.scriptamat.2010.06.023
  • Lee YK, Han J. Current opinion in medium manganese steel. Mater Sci Technol. 2014;31(7):843–856. doi: 10.1179/1743284714Y.0000000722
  • Luo H, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel. Acta Mater. 2011;59(10):4002–4014. doi: 10.1016/j.actamat.2011.03.025
  • Hu J, Du L-X, Sun G-S, et al. The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel. Scripta Mater. 2015;104:87–90. doi: 10.1016/j.scriptamat.2015.04.009
  • Yi HL, Sun L, Xiong XC. Challenges in the formability of the next generation of automotive steel sheets. Mater Sci Technol. 2018;34(9):1112–1117. doi: 10.1080/02670836.2018.1424383
  • Takahashi M. Development of high strength steels for automobiles. Nippon Steel Technical Report. 2003;88:2–6.
  • Suh DW, Ryu JH, Joo MS, et al. Medium-alloy manganese-rich transformation-induced plasticity steels. Metall Mater Trans A. 2012;44(1):286–293. doi: 10.1007/s11661-012-1402-3
  • Suh D-W, Park S-J, Lee T-H, et al. Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel. Metall Mater Trans A. 2009;41(2):397–408. doi: 10.1007/s11661-009-0124-7
  • Lee S-J, Lee S, De Cooman BC. Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel. Scripta Mater. 2011;64(7):649–652. doi: 10.1016/j.scriptamat.2010.12.012
  • Hu J, Cao W, Huang C, et al. Characterization of microstructures and mechanical properties of cold-rolled medium-Mn steels with different annealing processes. ISIJ Int. 2015;55(10):2229–2236. doi: 10.2355/isijinternational.ISIJINT-2015-187
  • Luo H, Dong H, Huang M. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels. Mater Des. 2015;83:42–48. doi: 10.1016/j.matdes.2015.05.085
  • De Moor E, Matlock DK, Speer JG, et al. Austenite stabilization through manganese enrichment. Scripta Mater. 2011;64(2):185–188. doi: 10.1016/j.scriptamat.2010.09.040
  • Arnell R. Determination of retained austenite in steel by X-ray diffraction. J Iron Steel Inst. 1968;206:1035–1036.
  • Vandijk N, Butt A, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Mater. 2005;53(20):5439–5447. doi: 10.1016/j.actamat.2005.08.017
  • Bhadeshia H, Honeycombe R. Steels: microstructure and properties. London: Butterworth-Heinemann; 2011.
  • Heo Y-U, Suh D-W, Lee H-C. Fabrication of an ultrafine-grained structure by a compositional pinning technique. Acta Mater. 2014;77:236–247. doi: 10.1016/j.actamat.2014.05.057
  • Takaki S, Tomimura K, Ueda S. Effect of pre-cold-working on diffusional reversion of deformation induced martensite in metastable austenitic stainless steel. ISIJ Int. 1994;34(6):522–527. doi: 10.2355/isijinternational.34.522
  • Misra RDK, Nayak S, Mali SA, et al. On the significance of nature of strain-induced martensite on phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel. Metall Mater Trans A. 2009;41(1):3–12. doi: 10.1007/s11661-009-0072-2
  • Gibbs PJ, De Moor E, Merwin MJ, et al. Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel. Metall Mater Trans A. 2011;42(12):3691–3702. doi: 10.1007/s11661-011-0687-y
  • Sugimoto K-I, Kobayashi M, Hashimoto S-I. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel. Metall Trans A. 1992 November 01;23(11):3085–3091. doi: 10.1007/BF02646127
  • Cai ZH, Ding H, Misra RDK, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater. 2015;84:229–236. doi: 10.1016/j.actamat.2014.10.052
  • Lee S, De Cooman BC. Tensile behavior of intercritically annealed 10 pct Mn multi-phase steel. Metall Mater Trans A. 2013;45(2):709–716. doi: 10.1007/s11661-013-2047-6
  • Lee S, De Cooman BC. Effect of the intercritical annealing temperature on the mechanical properties of 10 Pct Mn multi-phase steel. Metall Mater Trans A. 2014;45(11):5009–5016. doi: 10.1007/s11661-014-2449-0
  • Li X, Song R, Zhou N, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing. Scripta Mater. 2018;154:30–33. doi: 10.1016/j.scriptamat.2018.05.016
  • Tomota Y, Narui A, Tsuchida N. Tensile behavior of fine-grained steels. ISIJ Int. 2008;48(8):1107–1113. doi: 10.2355/isijinternational.48.1107
  • Bouaziz O, Estrin Y, Bréchet Y, et al. Critical grain size for dislocation storage and consequences for strain hardening of nanocrystalline materials. Scripta Mater. 2010;63(5):477–479. doi: 10.1016/j.scriptamat.2010.05.006
  • Tsuchida N, Tomota Y, Nagai K, et al. A simple relationship between Lüders elongation and work-hardening rate at lower yield stress. Scripta Mater. 2006;54(1):57–60. doi: 10.1016/j.scriptamat.2005.09.011
  • Han J, Lee S-J, Jung J-G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel. Acta Mater. 2014;78:369–377. doi: 10.1016/j.actamat.2014.07.005
  • Ueji R, Tsuji N, Minamino Y, et al. Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite. Acta Mater. 2002;50(16):4177–4189. doi: 10.1016/S1359-6454(02)00260-4
  • Xiong XC, Chen B, Huang MX, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Mater. 2013;68(5):321–324. doi: 10.1016/j.scriptamat.2012.11.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.