281
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Enhancement of mechanical properties of a soft magnetic Fe-based metallic glass

, &
Pages 865-871 | Received 26 Nov 2018, Accepted 07 Mar 2019, Published online: 25 Mar 2019

References

  • Shen B, Chang C, Inoue A. Formation, ductile deformation behavior and soft-magnetic properties of (Fe,Co,Ni)–B–Si–Nb bulk glassy alloys. Intermetallics. 2007;15:9–16. doi: 10.1016/j.intermet.2005.11.037
  • Lesz S, Kwapuliński P, Nabiałek M, et al. Thermal stability, crystallization and magnetic properties of Fe-Co-based metallic glasses. J Therm Anal Calorim. 2016;125:1143–1149. doi: 10.1007/s10973-016-5430-x
  • Rezaei-Shahreza P, Seifoddini A, Hasani S. Non-isothermal kinetic analysis of nano-crystallization process in (Fe41Co7Cr15Mo14Y2C15)94B6 amorphous alloy. Thermochim Acta. 2017;652:119–125. doi: 10.1016/j.tca.2017.03.017
  • Jung HY, Stoica M, Yi S, et al. Electrical and magnetic properties of Fe-based bulk metallic glass with minor Co and Ni addition. J Magn Magn Mater. 2014;364:80–84. doi: 10.1016/j.jmmm.2014.04.028
  • Ansariniya M, Seifoddini A, Hasani S. (Fe0.9Ni0.1)77Mo5P9C7.5B1.5 bulk metallic glass matrix composite produced by partial crystallization: The non-isothermal kinetic analysis. J Alloys Compd. 2018;763:606–612. doi: 10.1016/j.jallcom.2018.05.360
  • Rezaei-Shahreza P, Seifoddini A, Hasani S. Thermal stability and crystallization process in a Fe-based bulk amorphous alloy: The kinetic analysis. J Non Cryst Solids. 2017;471:286–294. doi: 10.1016/j.jnoncrysol.2017.05.044
  • Minić DG, Blagojević VA, Mihajlović LE, et al. Kinetics and mechanism of structural transformations of Fe75Ni2Si8B13C2amorphous alloy induced by thermal treatment. Thermochim Acta. 2011;519:83–89. doi: 10.1016/j.tca.2011.02.040
  • Rezaei-Shahreza P, Seifoddini A, Hasani S. Microstructural and phase evolutions: their dependent mechanical and magnetic properties in a Fe-based amorphous alloy during annealing process. J Alloys Compd. 2018;738:197–205. doi: 10.1016/j.jallcom.2017.12.135
  • Amiya K, Inoue A. Fe-(Cr, Mo)-(C, B)-Tm bulk metallic glasses with high strength and high glass-forming ability. J Rev Adv Mater Sci. 2008;18:27–31.
  • Park JM, Wang G, Li R, et al. Enhancement of plastic deformability in Fe–Ni–Nb–B bulk glassy alloys by controlling the Ni-to-Fe concentration ratio. Appl Phys Lett. 2010;96:031905. doi: 10.1063/1.3291668
  • Guo SF, Liu L, Li N, et al. Fe-based bulk metallic glass matrix composite with large plasticity. Scr Mater. 2010;62:329–332. doi: 10.1016/j.scriptamat.2009.10.024
  • Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48:279–306. doi: 10.1016/S1359-6454(99)00300-6
  • Suryanarayana C., Inoue A. Bulk metallic glasses. 2. New York: Taylor & Francis Group; 2017.
  • Hasani S, Rezaei-Shahreza P, Seifoddini A, et al. Enhanced glass forming ability, mechanical, and magnetic properties of Fe 41 Co 7 Cr 15 Mo 14 Y 2 C 15 B 6 bulk metallic glass with minor addition of Cu. J Non Cryst Solids. 2018;497:40–47. doi: 10.1016/j.jnoncrysol.2018.05.021
  • Jaafari Z, Seifoddini A, Hasani S, et al. Kinetic analysis of crystallization process in [(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100−xCux (x = 0.1 at.%) BMG. J Therm Anal Calorim. 2018;134:1565–1574. doi: 10.1007/s10973-018-7372-y
  • Chang C, Shen B, Inoue A. FeNi-based bulk glassy alloys with superhigh mechanical strength and excellent soft-magnetic properties. Appl Phys Lett. 2006;89:051912. doi: 10.1063/1.2266702
  • Wang A, Zhang M, Zhang J, et al. Effect of Ni addition on the glass-forming ability and soft-magnetic properties of FeNiBPNb metallic glasses. Chin Sci Bull. 2011;56:3932–3936. doi: 10.1007/s11434-011-4757-8
  • Chakri N-E, Bendjemil B, Baricco M. Crystallization kinetics and magnetic properties of Fe40Ni40B20 bulk metallic glass. Adv Chem Eng Sci. 2013;4:36. doi: 10.4236/aces.2014.41005
  • Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater. 2007;55:4067–4109. doi: 10.1016/j.actamat.2007.01.052
  • Raghavan R, Shastry VV, Kumar A, et al. Toughness of as-cast and partially crystallized composites of a bulk metallic glass. Intermetallics. 2009;17:835–839. doi: 10.1016/j.intermet.2009.03.012
  • Mattern N, Gemming T, Thomas J, et al. Phase separation in Ni–Nb–Y metallic glasses. J Alloys Compd. 2010;495:299–304. doi: 10.1016/j.jallcom.2009.10.013
  • Mattern N, Kuehn U, Gebert A, et al. Phase separation in liquid and amorphous Ni–Nb–Y alloys. Mater Sci Eng: A. 2007;449:207–210. doi: 10.1016/j.msea.2006.02.269
  • Park ES, Kyeong JS, Kim DH. Phase separation and improved plasticity by modulated heterogeneity in Cu–(Zr, Hf)–(Gd, Y)–Al metallic glasses. Scr Mater. 2007;57:49–52. doi: 10.1016/j.scriptamat.2007.03.008
  • Park ES, Lee JY, Kim DH. Effect of Ag addition on the improvement of glass-forming ability and plasticity of Mg–Cu–Gd bulk metallic glass. J Mater Res. 2005;20:2379–2385. doi: 10.1557/jmr.2005.0314
  • Kündig AA, Ohnuma M, Ping DH, et al. In situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 2004;52:2441–2448. doi: 10.1016/j.actamat.2004.01.036
  • Park BJ, Chang HJ, Kim DH, et al. In situ formation of two amorphous phases by liquid phase separation in Y–Ti–Al–Co alloy. Appl Phys Lett. 2004;85:6353–6355. doi: 10.1063/1.1842360
  • Busch R, Gaertner F, Schneider S, et al. The earliest stage of the solid state Amorphization Reaction in the Zr-Co system. MRS Online Proc Library Archive. 1994;343:229. doi: 10.1557/PROC-343-229
  • Osamura K, Shibue K, Suzuki R, et al. Study of the structure and crystallization of an Fe-17 at% B amorphous alloy. J Mater Sci. 1981;16:957–967. doi: 10.1007/BF00542740
  • Hasani S, Rezaei-Shahreza P, Seifoddini A. Effect of Cu presence on Evolution of mechanical and magnetic properties in a Novel Fe-based bulk metallic glass during partial annealing process. Metall Mater Trans A. 2019;50A:63–71. doi: 10.1007/s11661-018-4976-6
  • Askari-paykani M, Ahmadabadi MN, Seiffodini A. Materials Science & Engineering A The effect of liquid phase separation on the Vickers microindentation shear bands evolution in a Fe-based bulk metallic glass. Mater Sci Eng A. 2013;585:363–370. doi: 10.1016/j.msea.2013.07.045
  • Seifoddini A, Stoica M, Nili-Ahmadabadi M, et al. New (Fe0.9Ni0.1)77Mo5P9C7.5B1.5 glassy alloys with enhanced glass-forming ability and large compressive strain. Mater Sci Eng: A. 2013;560:575–582. doi: 10.1016/j.msea.2012.09.104
  • Castellero A, Uhlenhaut DI, Moser B, et al. Critical Poisson ratio for room-temperature embrittlement of amorphous Mg85Cu5Y10. Philos Mag Lett. 2007;87:383–392. doi: 10.1080/09500830701194181
  • Seiffodini A, Zaremehrjardi S. Effects of heat treatment on crystallization behavior, microstructure and glass composite. J Non Cryst Solids. 2016;432:313–318. doi: 10.1016/j.jnoncrysol.2015.10.023
  • Keryvin V. Indentation of bulk metallic glasses: Relationships between shear bands observed around the prints and hardness. Acta Mater. 2007;55:2565–2578. doi: 10.1016/j.actamat.2006.12.005
  • Tang C, Li Y, Zeng K. Characterization of mechanical properties of a Zr-based metallic glass by indentation techniques. Mater Sci Eng: A. 2004;384:215–223. doi: 10.1016/j.msea.2004.06.013
  • Moradkhani A, Baharvandi H, Tajdari M, et al. Determination of fracture toughness using the area of micro-crack tracks left in brittle materials by Vickers indentation test. J Adv Ceram. 2013;2:87–102. doi: 10.1007/s40145-013-0047-z
  • Keryvin V, Hoang VHH, Shen J. Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation. Intermetallics. 2010;18:748. doi: 10.1016/j.intermet.2009.12.001
  • Tumanski S. Handbook of magnetic Measurements, Edition: 1. Poland: Taylor & Francis Group; 2011.
  • Sablik MJ. Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steels. J Appl Phys. 2001;89:5610–5613. doi: 10.1063/1.1359167
  • Hasani S, Shamanian M, Shafyei A, et al. Influence of annealing treatment on micro/macro-texture and texture dependent magnetic properties in cold rolled FeCo–7.15V alloy. J Magn Magn Mater. 2015;378:253–260. doi: 10.1016/j.jmmm.2014.11.050
  • Hasani S, Shamanian M, Shafyei A, et al. Nano/sub-micron crystallization of Fe–Co–7.15V alloy by thermo-mechanical process to improve magnetic properties. Mater Sci Eng: B. 2014;190:96–103. doi: 10.1016/j.mseb.2014.09.013
  • Kronmüller H, Goll D. Micromagnetic theory of the pinning of domain walls at phase boundaries. Phys B. 2002;319:122–126. doi: 10.1016/S0921-4526(02)01113-4
  • Jung HY, Yi S. Nanocrystallization and soft magnetic properties of Fe23M 6 (M: C or B) phase in Fe-based bulk metallic glass. Intermetallics. 2014;49:18–22. doi: 10.1016/j.intermet.2014.01.005
  • Sourmail T. Near equiatomic FeCo alloys: Constitution, mechanical and magnetic properties. Prog Mater Sci. 2005;50:816–880. doi: 10.1016/j.pmatsci.2005.04.001
  • Chin G.Y., Wernick J.H. Handbook of Ferromagnetic Materials: Chapter 2 Soft magnetic metallic materials. Vol. 2. Netherlands: North-Holland Publishing Company; 1980. p. 55–188. doi: 10.1016/S1574-9304(05)80103-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.