349
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Porosity analysis of superfine-grain graphite IG-110 and ultrafine-grain graphite T220

& ORCID Icon
Pages 962-968 | Received 28 Dec 2018, Accepted 21 Mar 2019, Published online: 02 Apr 2019

References

  • Freeman HM, Jones AN, Ward MB, et al. On the nature of cracks and voids in nuclear graphite. Carbon. 2015;103:45–55. doi: 10.1016/j.carbon.2016.03.011
  • Burchell TD, Snead LL. The effect of neutron irradiation damage on the properties of grade NBG-10 graphite. J Nucl Mater. 2007;371:18–27. doi: 10.1016/j.jnucmat.2007.05.021
  • Marsden BJ, Haverty M, Bodel W, et al. Dimensional change, irradiation creep and thermal/mechanical pro-perty changes in nuclear graphite. Int. Mater. Rev. 2016;61(3):155–182. doi: 10.1080/09506608.2015.1136460
  • Marsden BJ, Hall GN, Wouters O, et al. Dimensional and material property changes to irradiated Gilsocarbon graphite irradiated between 650 and 750°C. J Nucl Mater. 2008;381:62–67. doi: 10.1016/j.jnucmat.2008.07.018
  • Paul RM, Morral JE. A 3D random pore model for oxidation of graphite with open porosity. J Nucl Mater. 2018;499:344–352. doi: 10.1016/j.jnucmat.2017.11.056
  • Huang WH, Tsai SC, Yang CW, et al. The relationship between microstructure and oxidation effects of selected IG- and NBG-grade nuclear graphites. J Nucl Mater. 2014;454:149–158. doi: 10.1016/j.jnucmat.2014.07.052
  • Yang X, Tsang DKL. Evaluating Young’s modulus of porous nuclear graphite by a novel multi-scale method. J Mater Sci. 2017;52(18):10959–10971. doi: 10.1007/s10853-017-1259-3
  • Hodgkins A, Marrow TJ, Wootton MR, et al. Fracture behaviour of radiolytically oxidised reactor core graphites: a view. Mater Sci Technol. 2010;26(8):899–907. doi: 10.1179/026708309X12526555493477
  • Tang H, Qi W, He Z, et al. Infiltration of graphite by molten 2LiF-BeF2 salt. J Mater Sci. 2017;52(19):11346–11359. doi: 10.1007/s10853-017-1310-4
  • Jing SP, Zhang C, Pu J, et al. 3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10. Nucl Sci Tech. 2016;27:66. doi: 10.1007/s41365-016-0071-0
  • Vertyagina Y, Marrow TJ. Multifractal-based assessment of Gilsocarbon graphite microstructures. Carbon. 2016;109:711–718. doi: 10.1016/j.carbon.2016.08.049
  • Payne L, Heard PJ, Scott TB. A study of the oxidation behavior of Pile Grade A (PGA) nuclear graphite using thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and X-ray tomography (XRT). Plos One. 2015;10(11):0143041. doi: 10.1371/journal.pone.0143041
  • Babout L, Marsden BJ, Mummery PM, et al. Three-dimensional characterization and thermal property modelling of thermally oxidized nuclear graphite. Acta Mater. 2008;56(16):4242–4254. doi: 10.1016/j.actamat.2008.04.045
  • Hodgkins A, Marrow TJ, Mummery P, et al. X-ray tomography observation of crack propagation in nuclear graphite. Mater Sci Technol. 2006;22(9):1045–1051. doi: 10.1179/174328406X114126
  • Moskovic R, Flewitt PEJ, Schlangen E, et al. Understanding fracture behaviour of PGA reactor core graphite: perspective. Mater Sci Technol. 2014;30(2):129–145. doi: 10.1179/1743284713Y.0000000354
  • Liu D, Flewitt PEJ. Deformation and fracture of carbonaceous materials using in situ micro-mechanical testing. Carbon. 2017;114:261–274. doi: 10.1016/j.carbon.2016.11.084
  • Kane J, Karthik C, Butt DP, et al. Microstructural characterization and pore structure analysis of nuclear graphite. J Nucl Mater. 2011;415(2):189–197. doi: 10.1016/j.jnucmat.2011.05.053
  • Contescu CI, Guldan T, Wang P, et al. The effect of microstructure on air oxidation resistance of nuclear graphite. Carbon. 2012;50(9):3354–3366. doi: 10.1016/j.carbon.2012.01.040
  • Taylor JEL, Hall GN, Mummery PM. Investigating the effects of stress on the pore structures of nuclear grade graphites. J Nucl Mater. 2016;470:216–228. doi: 10.1016/j.jnucmat.2015.12.031
  • Wang P, Contescu CI, Yu S, et al. Pore structure development in oxidized IG-110 nuclear graphite. J Nucl Mater. 2012;430:229–238. doi: 10.1016/j.jnucmat.2012.07.015
  • León y León CA. New perspectives in mercury porosimetry. Adv Colloid Interfac. 1998;76–77:341–372. doi: 10.1016/S0001-8686(98)00052-9
  • Diamond S. Mercury porosimetry An inappropriate method for the measurement of pore size distributions in cement-based materials. Cement Concrete Res. 2000;30(10):1517–1525. doi: 10.1016/S0008-8846(00)00370-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.