192
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Formation mechanism of growth twins in Mg–3Gd–0.6Zr alloy

, , , , , , , & show all
Pages 978-985 | Received 22 Oct 2018, Accepted 25 Mar 2019, Published online: 07 Apr 2019

References

  • Li ZM, Luo AA, Wang QG, et al. Fatigue characteristics of sand–cast AZ91D magnesium alloy. J Magnes Alloys. 2017;5:1–12. doi: 10.1016/j.jma.2017.03.001
  • Yu ZW, Hu MD, Tang AT, et al. Effect of aluminium on the microstructure and mechanical properties of as–cast magnesium–manganese alloys. Mater Sci Technol. 2017;33:2086–2096. doi: 10.1080/02670836.2017.1345824
  • Yang CB, Pan FS, Chen XH, et al. Thermal conductivity and mechanical properties of Sm–containing Mg–Zn–Zr alloys. Mater Sci Technol. 2018;34:138–144. doi: 10.1080/02670836.2017.1366707
  • Lu L, Shen YF, Chen XH, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304:422–426. doi: 10.1126/science.1092905
  • Zhuo LC, Liang SH, Zhang T. The 1.85 GPa AlSc bulk alloy with abundant nanoscale growth twins. Chin Phys Lett. 2015;32(076401):1–4.
  • Buerger MJ. The genesis of twin crystals. Amer Mineralogist. 1945;30:469–482.
  • Hartman P. On the morphology of growth twins. Z Kristallogr. 1956;107:225–237. doi: 10.1524/zkri.1956.107.3.225
  • Kern R. Sur la formation des macles de croissance. Bull Soc Franc Mineral Cristallogr. 1961;84:292–231.
  • Donnelly TW. Kinetic considerations in the genesis of growth twinning. Amer Mineralogist. 1967;52:1–12.
  • Mahajan S. Critique of mechanisms of formation of deformation, annealing and growth twins: face–centered cubic metals and alloys. Scr Mater. 2013;68:95–99. doi: 10.1016/j.scriptamat.2012.09.011
  • Beyerlein IJ, Zhang XH, Misra A. Growth twins and deformation twins in metals. Annu Rev Mater Res. 2014;44:329–363. doi: 10.1146/annurev-matsci-070813-113304
  • Christian JW, Mahajan S. Deformation twinning. Prog Mater Sci 1995;39:1–157. doi: 10.1016/0079-6425(94)00007-7
  • Wu PD, Guo XQ, Qiao H, et al. A constitutive model of twin nucleation, propagation and growth in magnesium crystals. Mater Sci Eng A. 2015;625:140–145. doi: 10.1016/j.msea.2014.11.096
  • Alaneme KK, Okotete EA. Enhancing plastic deformability of Mg and its alloys–A review of traditional and nascent developments. J Magnes Alloys. 2017;5:460–475. doi: 10.1016/j.jma.2017.11.001
  • Mahajan S, Pande CS, Imam MA, et al. Formation of annealing twins in fcc crystals. Acta Mater. 1997;45:2633–2638. doi: 10.1016/S1359-6454(96)00336-9
  • Meyers MA, Murr LE. A model for the formation of annealing twins in fcc metals and alloys. Acta Met. 1978;26:951–962. doi: 10.1016/0001-6160(78)90046-9
  • Gleiter H. The formation of annealing twins. Acta Met. 1969;17:1421–1428. doi: 10.1016/0001-6160(69)90004-2
  • Zhang J, Dou YC, Zheng Y. Twin–boundary segregation energies and solute–diffusion activation enthalpies in Mg–based binary systems: a first–principles study. Scr Mater. 2014;80:17–20. doi: 10.1016/j.scriptamat.2014.02.004
  • Nie JF, Zhu YM, Liu JZ, et al. Periodic segregation of solute atoms in fully coherent twin boundaries. Science. 2013;340:957–960. doi: 10.1126/science.1229369
  • Rokhlin LL. Magnesium alloys containing rare earth metals–structure and properties. London and New York: Taylor and Francis Press; 2003; p. 44–45.
  • St John DH, Ma Q, Easton MA, et al. Grain refinement of magnesium alloys. Metall Mater Trans A. 2005;36:1669–1679. doi: 10.1007/s11661-005-0030-6
  • Koike J. Enhanced deformation mechanisms by aniso-tropic plasticity in polycrystalling Mg alloys at room temperature. Metall Mater Trans A. 2005;36:1689–1696. doi: 10.1007/s11661-005-0032-4
  • Stanford N, Marceau RKW, Barnett MR. The effect of high yttrium solute concentration on the twinning behaviour of magnesium alloys. Acta Mater. 2015;82:447–456. doi: 10.1016/j.actamat.2014.09.022
  • Agnew SR, Duygulu O. Plastic anisotropy and the role of nonbasal slip in magnesium alloy AZ31. Int J Plasticity. 2005;21:1161–1193. doi: 10.1016/j.ijplas.2004.05.018
  • Taylor GI. Plastic strain in metals. J Inst Met. 1938;62:307–338.
  • Barnett MR. Twinning and the ductility of magnesium alloys part I: “tension” twins. Mater Sci Eng A 2007;464:1–7. doi: 10.1016/j.msea.2006.12.037
  • Li B, Ma E. Atomic shuffling dominated mechanism for deformation twinning in magnesium. Phys Rev Lett. 2009;103(035503):1–4.
  • Kim KH, Hwang JH, Jang HS, et al. Dislocation binding as an origin for the improvement of roon temperature ductility in Mg alloys. Mater Sci Eng A. 2018;715:266–275. doi: 10.1016/j.msea.2018.01.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.