220
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Improving mechanical properties for pure irons by local surface mechanical attrition treatment

, , , , &
Pages 1257-1264 | Received 18 Jan 2019, Accepted 10 May 2019, Published online: 23 May 2019

References

  • Tao ZBWNR, Tong WP, Sui ML, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 2002;50:4603–4616. doi: 10.1016/S1359-6454(02)00310-5
  • Wang ZB, Tao NR, Tong WP, et al. Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment. Acta Mater. 2003;51(14):4319–4329. doi: 10.1016/S1359-6454(03)00260-X
  • Li Y, Hou L, Wei Y, et al. Enhancement of siliconizing behaviors in pure iron induced by surface mechanical attrition treatment. Surf Coat Technol. 2017;309:462–470. doi: 10.1016/j.surfcoat.2016.12.017
  • Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331(6024):1587–1590. doi: 10.1126/science.1200177
  • AlMangour B, Yang J-M. Integration of heat treatment with shot peening of 17–4 stainless steel fabricated by direct metal laser sintering. JOM. 2017;69(11):2309–2313. doi: 10.1007/s11837-017-2538-9
  • AlMangour B, Yang J-M. Improving the surface quality and mechanical properties by shot-peening of 17–4 stainless steel fabricated by additive manufacturing. Mater Des. 2016;110:914–924. doi: 10.1016/j.matdes.2016.08.037
  • Lin Y, Lu J, Wang L, et al. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Mater. 2006;54(20):5599–5605. doi: 10.1016/j.actamat.2006.08.014
  • Han Jing SG, Guoxiong H. Research present on surface self-nanocrystallization of metallic materials. Mater Rev; 21:2–6.
  • Roland T, Retraint D, Lu K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr Mater. 2006;54(11):1949–1954. doi: 10.1016/j.scriptamat.2006.01.049
  • Bahl S, Shreyas P, Trishul MA, et al. Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification. Nanoscale. 2015;7(17):7704–7716. doi: 10.1039/C5NR00574D
  • Zhang YS, Han Z, Wang K, et al. Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear. 2006;260(9–10):942–948. doi: 10.1016/j.wear.2005.06.010
  • Wen L, Wang Y, Zhou Y, et al. Microstructure and corrosion resistance of modified 2024 Al alloy using surface mechanical attrition treatment combined with microarc oxidation process. Corros Sci. 2011;53(1):473–480. doi: 10.1016/j.corsci.2010.09.061
  • Huang R, Lu S, Han Y. Role of grain size in the regulation of osteoblast response to Ti-25Nb-3Mo-3Zr-2Sn alloy. Colloid Surf B Biointerf. 2013;111:232–241. doi: 10.1016/j.colsurfb.2013.06.007
  • Bagherifard S, Hickey DJ, de Luca AC, et al. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials. 2015;73:185–197. doi: 10.1016/j.biomaterials.2015.09.019
  • Bagheri S, Guagliano M. Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys. Surf Eng. 2013;25(1):3–14. doi: 10.1179/026708408X334087
  • Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10(11):817–822. doi: 10.1038/nmat3115
  • Zhu KY, Vassel A, Brisset F, et al. Nanostructure formation mechanism of α-titanium using SMAT. Acta Mater. 2004;52(14):4101–4110. doi: 10.1016/j.actamat.2004.05.023
  • Wang K, Tao NR, Liu G, et al. Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater. 2006;54(19):5281–5291. doi: 10.1016/j.actamat.2006.07.013
  • Tao NR, Wu XL, Sui ML, et al. Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy. J Mater Res. 2011;19(06):1623–1629. doi: 10.1557/JMR.2004.0227
  • Wu X, Tao N, Hong Y, et al. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of AL-alloy subjected to USSP. Acta Mater. 2002;50:2075–2084. doi: 10.1016/S1359-6454(02)00051-4
  • Zhang HW, Hei ZK, Liu G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 2003;51(7):1871–1881. doi: 10.1016/S1359-6454(02)00594-3
  • Chen XH, Lu J, Lu L, et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scr Mater. 2005;52(10):1039–1044. doi: 10.1016/j.scriptamat.2005.01.023
  • Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng A. 2004;375–377:38–45. doi: 10.1016/j.msea.2003.10.261
  • Liao M, Lu X, Zhu X, et al. Effect of nano-crystallization and annealing of Cr5Mo on its flow accelerated corrosion. Mater Prot. 2014;47:40–43.
  • Zhao YH, Bingert JF, Liao XZ, et al. Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv Mater. 2006;18(22):2949–2953. doi: 10.1002/adma.200601472
  • Wei Y, Li Y, Zhu L, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat Commun. 2014;5:3580. doi: 10.1038/ncomms4580
  • Wang X, Li YS, Zhang Q, et al. Gradient structured copper by rotationally accelerated shot peening. J Mater Sci Technol. 2017;33(7):758–761. doi: 10.1016/j.jmst.2016.11.006
  • Wang YF, Huang CX, Wang MS, et al. Quantifying the synergetic strengthening in gradient material. Scr Mater. 2018;150:22–25. doi: 10.1016/j.scriptamat.2018.02.039
  • Li Y, Li L, Nie J, et al. Microstructural evolution and mechanical properties of a 5052 Al alloy with gradient structures. J Mater Res. 2017;32(23):4443–4451. doi: 10.1557/jmr.2017.310
  • Liu X, Wu K, Wu G, et al. High strength and high ductility copper obtained by topologically controlled planar heterogeneous structures. Scr Mater. 2016;124:103–107. doi: 10.1016/j.scriptamat.2016.07.003
  • Symonds PS, Yu TX. Counterintuitive behavior in a problem of elastic-plastic beam dynamics. J Appl Mech. 1985;52(3):517. doi: 10.1115/1.3169093
  • Li QM, Liu YM, Ma GW. The anomalous region of elastic–plastic beam dynamics. Int J Impact Eng. 2006;32(9):1357–1369. doi: 10.1016/j.ijimpeng.2005.01.003
  • Yang X, Ma X, Moering J, et al. Influence of gradient structure volume fraction on the mechanical properties of pure copper. Mater Sci Eng A. 2015;645:280–285. doi: 10.1016/j.msea.2015.08.037
  • Cai B, Ma X, Moering J, et al. Enhanced mechanical properties in Cu–Zn alloys with a gradient structure by surface mechanical attrition treatment at cryogenic temperature. Mater Sci Eng A. 2015;626:144–149. doi: 10.1016/j.msea.2014.12.070
  • Wu X, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci USA. 2014;111(20):7197–7201. doi: 10.1073/pnas.1324069111
  • Yu X, Li Y, Li L. Fracture mechanism of AZ31 magnesium alloy processed by equal channel angular pressing comparing three point bending test and tensile test. Eng Fail Anal. 2015;58:322–335. doi: 10.1016/j.engfailanal.2015.04.020
  • Murdoch H, Darling K, Roberts A, et al. Mechanical behavior of ultrafine gradient grain structures produced via ambient and cryogenic surface mechanical attrition treatment in iron. Metals. 2015;5(2):976–985. doi: 10.3390/met5020976
  • Wu XL, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2(4):185–191. doi: 10.1080/21663831.2014.935821
  • Yasnikov IS, Vinogradov A, Estrin Y. Revisiting the considère criterion from the viewpoint of dislocation theory fundamentals. Scr Mater. 2014;76:37–40. doi: 10.1016/j.scriptamat.2013.12.009
  • Kocks HMUF. Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci. 2003;48:171–273. doi: 10.1016/S0079-6425(02)00003-8
  • Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527–532. doi: 10.1080/21663831.2017.1343208
  • Li J, Cao Y, Gao B, et al. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure. J Mater Sci. 2018;53(14):10442–10456. doi: 10.1007/s10853-018-2322-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.