1,212
Views
4
CrossRef citations to date
0
Altmetric
Critical Assessment

Critical Assessment 38: Assessment of the intrinsic susceptibility to hydrogen embrittlement for qualification of steels

&
Pages 1003-1011 | Received 07 May 2019, Accepted 28 Jun 2019, Published online: 14 Jul 2019

References

  • Briottet L, Moro I, Solin J, et al. Research on fatigue of Cr-Mo steel for hydrogen storage vessels. In: Somerday BP, Sofronis P, editors. Materials performance in hydrogen environments. New York (NY): ASME; 2017. p. 244–253.
  • Saxena A, Prakash A, Nibur KA, et al. Considerations of the effects of H2 in the design of type II storage vessels built for fatigue resistance. In: Somerday BP, Sofronis P, editors. Materials performance in hydrogen environments. New York (NY): ASME; 2017. p. 382–389.
  • Neeraj T. Hydrogen embrittlement and its impact on oil and gas industry. In: Somerday BP, Sofronis P, editors. Materials performance in hydrogen environments. New York (NY): ASME; 2017. p. 45–53.
  • Nagumo M. Fundamentals of hydrogen embrittlement. Singapore: Springer Nature; 2016; Chapter 6, Manifestations of hydrogen embrittlement; p. 103–135.
  • ASME Article KD-10. Special requirements for vessels in high pressure gaseous hydrogen transport and storage service, 2007.
  • ANSI/CSA CHMC1-2014. Test methods for evaluating material compatibility in compressed hydrogen applications – metals, 2014.
  • International Organization for Standardization (ISO). Transportable gas cylinders – compatibility of cylinder and valve materials with gas contents, part 4: test methods for selecting metallic materials resistant to hydrogen embrittlement. ISO; 2005. ISO11114-4.
  • Matsuoka K, Uno N, Akiyama W, et al. Stochastic evaluation of hydrogen uptake affecting the delayed fracture of high strength Bolts. Steel Construct Eng. 2013;20:29–40. Japanese.
  • Nagao A, Dadfarnia M, Sofronis P, et al. Hydrogen embrittlement: mechanism. In: Colás R, Totten GE, editors. Encyclopedia of iron, steel, and their alloy. New York (NY): Taylor & Francis; 2016. p. 1768–1784.
  • Nagumo M. Hydrogen embrittlement: theories. In: Colás R, Totten GE, editors. Encyclopedia of iron, steel, and their alloy. New York (NY): Taylor & Francis; 2016. p. 1785–1800.
  • Barrera S, Bombac D, Chen Y, et al. Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum. J Mater Sci. 2018;53:6251–6290. doi: 10.1007/s10853-017-1978-5
  • Pundt A, Kirchheim R. Hydrogen in metals: microstructural aspects. Annu Rev Mater Res. 2006;36:555–608. doi: 10.1146/annurev.matsci.36.090804.094451
  • Lynch SP. Hydrogen embrittlement phenomena and mechanisms. Corros Rev. 2012;30:105–123.
  • Robertson IM, Sofronis P, Nagao A, et al. Hydrogen embrittlement understood. Metall Mater Trans A. 2015;46A:2323–2341. doi: 10.1007/s11661-015-2836-1
  • Martin ML, Dadfarnia M, Nagao A, et al. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Mater. 2019;165:734–750. doi: 10.1016/j.actamat.2018.12.014
  • Neeraj T, Srinivasan R, Ju L. Hydrogen embrittlement of ferritic steels: observations on deformation microstructure, nanoscale dimples and failure by nanovoiding. Acta Mater. 2010;60:5160–5171. doi: 10.1016/j.actamat.2012.06.014
  • Nagumo M. Hydrogen related failure of steels – a new aspect (overview). Mater Sci Tech. 2004;20:940–950. doi: 10.1179/026708304225019687
  • Nagumo M, Takai K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: overview. Acta Mater. 2019;165:722–733. doi: 10.1016/j.actamat.2018.12.013
  • Hirth JP. The role of hydrogen in enhancing plastic instability and degrading fracture toughness in steels. In: Thompson AW, Moody NR, editors. Hydrogen effects in materials. Warrendale (PA): TMS; 1996. p. 507–522.
  • Lynch SP. Environmentally assisted cracking: overview of evidence for an adsorption-induced localized-slip process. Acta Metall. 1988;36:2639–2661. doi: 10.1016/0001-6160(88)90113-7
  • Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. Acta Mater. 2007;55:5129–5138. doi: 10.1016/j.actamat.2007.05.047
  • Matsumoto R, Taketomi S. Atomistic study of hydrogen effects on stability and mobility of vacancy and vacancy-clusters. Proceedings of Hydrogenius and I2CNER Joint Research Symposium on Hydrogen-materials Interactions. Fukuoka: Kyushu University; 2018. p. 13–23.
  • Suzuki N, Ishii N, Miyagawa T, et al. Estimation of delayed fracture properties of steels. Tetsu-to-Hagan. 1993;79:227–232. Japanese. doi: 10.2355/tetsutohagane1955.79.2_227
  • Yamazaki S, Takahashi T. Evaluation method of delayed fracture properties of high strength steels. Tetsu-to-Hagané. 1997;83:454–459. Japanese. doi: 10.2355/tetsutohagane1955.83.7_454
  • Takagi S, Inoue T, Hara T, et al. Parameters for the evaluation of hydrogen embrittlement of high strength steel. Tetsu-to-Hagané. 2000;86:689–695. Japanese. doi: 10.2355/tetsutohagane1955.86.10_689
  • Takagi S, Inoue T, Tsuzaki K, et al. Evaluation of hydrogen embrittlement susceptibility of high strength steel by the Weibull stress. J Jpn Inst Metals. 2001;65:1073–1081. Japanese. doi: 10.2320/jinstmet1952.65.12_1073
  • Wang E, Akiyama E, Tsuzaki K. Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation. Corros Sci. 2006;48:2189–2202. doi: 10.1016/j.corsci.2005.07.010
  • International Organization for Standardization (ISO). Measurement method for the evaluation of hydrogen embrittlement resistance of high strength steels. ISO; 2015. ISO 16573.
  • Oriani RA, Josephic PH. Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall. 1974;22:1065–1074. doi: 10.1016/0001-6160(74)90061-3
  • Kushida Y. Hydrogen entry into steel by atmospheric corrosion. ISIJ Int. 2001;43:470–474. doi: 10.2355/isijinternational.43.470
  • Takai K, Shoda H, Suzuki H, et al. Lattice defects dominating hydrogen-related failure of metals. Acta Mater. 2008;56:5158–5167. doi: 10.1016/j.actamat.2008.06.031
  • Owada N, Majima H, Eguchi T. Effects of alloying elements on delayed fracture. Advances in Delayed Fracture Solution – Report of Research Group. Tokyo: Iron Steel Inst. Jpn; 1997. p. 111–114. Japanese.
  • Kameda J. Equilibrium and growth characteristics of hydrogen-induced intergranular cracking in phosphorus-doped and high purity steels. Acta Metall. 1986;34:1721–1735. doi: 10.1016/0001-6160(86)90119-7
  • Nagumo M, Ohta K, Saitoh H. Deformation induced defects in iron revealed by thermal desorption spectroscopy of tritium. Scr Mater. 1999;40:313–319. doi: 10.1016/S1359-6462(98)00436-9
  • Fuchigami H, Minami H, Nagumo M. Effect of grain size on the susceptibility of martensitic steel to hydrogen embrittlement. Philos Mag Lett. 2006;86:21–29. doi: 10.1080/09500830500482316
  • Nagumo M, Matsuda H. Function of hydrogen in intergranular fracture of martensitic steels. Philos Mag A. 2002;82:3415–3425. doi: 10.1080/01418610208240452
  • Takai K, Watanuki R. Hydrogen in trapping states innocuous to environmental degradation of high-strength steels. ISIJ Int. 2003;43:520–526. doi: 10.2355/isijinternational.43.520
  • McMahon Jr CJ. Mechanism of intergranular fracture in alloy steels. Mater Charact. 1991;26:269–287. doi: 10.1016/1044-5803(91)90017-X
  • Bernstein IM. The role of hydrogen: is the story any clearer? In: Thompson AW, Moody NR, editors. Hydrogen effects in materials. Warrendale (PA): TMS; 1996. p. 3–11.
  • Takai H, Yamauchi G, Nakamura M, et al. Hydrogen trapping characteristics of cold-drawn pure iron and eutectoid steel evaluated by thermal desorption spectroscopy. J Jpn Inst Metals. 1998;62:267–275. Japanese. doi: 10.2320/jinstmet1952.62.3_267
  • Doshida T, Takai K. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content. Acta Mater. 2014;79:93–107. doi: 10.1016/j.actamat.2014.07.008
  • Hattori M, Suzuki H, Seko Y, et al. The role of hydrogen-enhanced strain-induced lattice defects on hydrogen embrittlement susceptibility of X80 pipeline steel. JOM. 2017;69:1376–1380. doi: 10.1007/s11837-017-2371-1
  • Nagumo M, Sekiguchi S, Hayashi H, et al. Enhanced susceptibility to delayed fracture in pre-fatigued martensitic steel. Mater Sci Eng A. 2003;344:86–91. doi: 10.1016/S0921-5093(02)00403-3
  • Doshida T, Suzuki H, Takai K, et al. Enhanced lattice defect formation associated with hydrogen and hydrogen embrittlement under elastic stress of a tempered martensitic steel. ISIJ Int. 2012;52:198–207. doi: 10.2355/isijinternational.52.198
  • Kido M, Nakasa K, Takei H. Delayed fracture under repeating stress in various high strength steels. Tetsu-to-Hagané. 1979;65:535–541. Japanese. doi: 10.2355/tetsutohagane1955.65.5_535
  • Izutsu K, Takai K, Nagumo M. Effect of cyclic stressing on delayed fracture of high strength steel. Tetsu-to-Hagané. 1997;83:371–376. Japanese. doi: 10.2355/tetsutohagane1955.83.6_371
  • Nagumo M, Uyama H, Yoshizawa M. Accelerated failure in high strength steel by alternating hydrogen-charging potential. Scr Mater. 2001;44:947–952. doi: 10.1016/S1359-6462(00)00683-7
  • Doshida M, Nakamura M, Saito H, et al. Hydrogen-enhanced lattice defect formation and hydrogen embrittlement of cyclically prestressed tempered martensitic steel. Acta Mater. 2013;61:7755–7766. doi: 10.1016/j.actamat.2013.09.015
  • Traiviratana S, Bringa EM, Benson DJ, et al. Void growth in metals: atomistic calculations. Acta Mater. 2008;56:3874–3886. doi: 10.1016/j.actamat.2008.03.047
  • Tang T, Kim S, Horstemeyer MF. Molecular dynamics simulations of void growth and coalescence in single crystal magnesium. Acta Mater. 2010;58:4742–4759. doi: 10.1016/j.actamat.2010.05.011
  • Zhang Y, Jiang S. Investigation on dislocation-based mechanisms of void growth and coalescence in single crystal and nanotwinned nickels by molecular dynamics simulation. Philos Mag. 2017;97:2772–2794. doi: 10.1080/14786435.2017.1352108
  • Chandra S, Samal MK, Chavan VM, et al. Void growth in single crystal copper-an atomistic modeling and statistical analysis study. Philos Mag. 2018;98:577–604. doi: 10.1080/14786435.2017.1412591
  • Hirth JP. Effects of hydrogen on the properties of iron and steel. Metall Trans A. 1980;11A:861–890. doi: 10.1007/BF02654700
  • Nagumo M. Fundamentals of hydrogen embrittlement. Singapore: Springer Nature; 2016; Chapter 3, Interactions of hydrogen with lattice defects; p. 35–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.