242
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Age hardening studies of a Cu–4Ti–Cr–Fe alloy

, , , , &
Pages 1848-1855 | Received 25 Mar 2019, Accepted 30 Jul 2019, Published online: 08 Aug 2019

References

  • Balachandran S, Smathers DB, Walsh RP, et al. High-strength Cu–Ta–W composite. IEEE Trans Appl Supercond. 2019;29(5):1–4.
  • Han K, Goddard RE, Toplosky V, et al. Alumina particle reinforced Cu matrix conductors. IEEE Trans Appl Supercond. 2018;28(3):1–5.
  • Kozlenkova N, Pantsyrnyi V, Nikulin A, et al. Electrical conductivity of high-strength Cu-Nb microcomposites. IEEE Trans Magn. 1996;32(4):2921–2924.
  • Popova E, Popov V, Romanov E, et al. Effect of deformation and annealing on texture parameters of composite Cu–Nb wire. Scr Mater. 2004;51(7):727–731.
  • Deng L, Han K, Hartwig KT, et al. Hardness, electrical resistivity, and modeling of in situ Cu–Nb microcomposites. J Alloys Compd. 2014;602:331–338.
  • Sakai Y, Inoue K, Asano T, et al. Development of a high strength, high conductivity copper-silver alloy for pulsed magnets. IEEE Trans Magn. 1992;28(1):888–891.
  • Soffa WA, Laughlin DE. High-strength age hardening copper–titanium alloys: redivivus. Prog Mater Sci. 2004;49(3):347–366.
  • Wang K, Tao NR, Liu G, et al. Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater. 2006;54(19):5281–5291.
  • von Bayern AMP, Heathcote RJP, Rutz C, et al. The role of experience in problem solving and innovative tool use in crows. Curr. Biol. 2009;19(22):1965–1968.
  • Wen M, Cizek P, Wen C, et al. Microstructural characteristics of a nanoeutectic Ag–Cu alloy processed by surface mechanical attrition treatment. Scr Mater. 2013;68(7):499–502.
  • Soffa WA, Laughlin DE. Decomposition and ordering processes involving thermodynamically first-order order → disorder transformations. Acta Metall. 1989;37(11):3019–3028.
  • Semboshi S, Nishida T, Numakura H. Microstructure and mechanical properties of Cu–3 at.% Ti alloy aged in a hydrogen atmosphere. Mater Sci Eng A. 2009;517(1):105–113.
  • Wu XL, Tao NR, Wei QM, et al. Microstructural evolution and formation of nanocrystalline intermetallic compound during surface mechanical attrition treatment of cobalt. Acta Mater. 2007;55(17):5768–5779.
  • Nagarjuna S, Srinivas M. Grain refinement during high temperature tensile testing of prior cold worked and peak aged Cu–Ti alloys: evidence of superplasticity. Mater Sci Eng A. 2008;498(1):468–474.
  • Nagarjuna S, Balasubramanian K, Sarma DS. Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys. J Mater Sci. 1999;34(12):2929–2942.
  • Xu Y, Liu ZG, Umemoto M, et al. Formation and annealing behavior of nanocrystalline ferrite in Fe-0.89C spheroidite steel produced by ball milling. Metall Mater Trans A. 2002;33(7):2195–2203.
  • Piotrowski W, Gawroński Z. Influence of vanadium on structure and kinetic transformations in Cu-Ti alloys. Met Sci J. 2013;7(1):502–508.
  • Vaidyanathan TK, Mukherjee K. Precipitation in Cu–Ti and Cu–Ti–Al alloys; discontinuous and localised precipitation. Mater Sci Eng. 1976;24(1):143–152.
  • Nagarjuna S, Sarma DS. Effect of cobalt additions on the age hardening of Cu-4.5Ti alloy. J Mater Sci. 2002;37(10):1929–1940.
  • Markandeya R, Nagarjuna S, Sarma DS. Precipitation hardening of Cu–Ti–Cr alloys. Mater Sci Eng A. 2004;371(1):291–305.
  • Markandeya R, Nagarjuna S, Sarma DS. Precipitation hardening of Cu-3Ti-1Cd alloy. J Mater Eng Perform. 2007;16(5):640–646.
  • Markandeya R, Nagarjuna S, Sarma DS. Characterization of prior cold worked and age hardened Cu–3Ti–1Cd alloy. Mater Charact. 2005;54(4):360–369.
  • Fernee H, Nairn J, Atrens A. Precipitation hardening of Cu-Fe-Cr alloys part I mechanical and electrical properties. J Mater Sci. 2001;36(11):2711–2719.
  • Yi H, Sabbaghianrad S, Almazrouee AI, et al. The significance of self-annealing at room temperature in high purity copper processed by high-pressure torsion. Mater Sci Eng A. 2016;656:55–66.
  • Yovel Y, Franz MO, Stilz P, et al. Plant classification from bat-like echolocation signals. PLoS Comput Biol. 2008;4(3):e1000032.
  • Zhang HW, Hei ZK, Liu G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 2003;51(7):1871–1881.
  • Zhou X, Li XY, Lu K. Enhanced thermal stability of nanograined metals below a critical grain size. Science. 2018;360(6388):526–530.
  • Fernee H, Nairn J, Atrens A. Quaternary Cu-0.7%Cr-0.3%Fe-X alloys. J Mater Sci. 2001;36(19):4763–4777.
  • Wei H, Cui Y, Cui H, et al. Effects of multiple trace alloying elements on the microstructure and properties of Cu-4wt-% Ti alloys. Mater Sci Eng A. 2017;707:392–398.
  • Semboshi S, Numakura H, Gao WL, et al. ‘Effect of Prior Cold-Working on Strength and Electrical Conductivity of Cu-Ti Dilute Alloy Aged in a Hydrogen Atmosphere’, 2010, 1315–1318.
  • Nagarjuna S, Srinivas M, Balasubramanian K, et al. On the variation of mechanical properties with solute content in Cu–Ti alloys. Mater Sci Eng A. 1999;259(1):34–42.
  • Laughlin DE, Cahn JW. Spinodal decomposition in age hardening copper-titanium alloys. Acta Metall. 1975;23(3):329–339.
  • Wei H, Wei YH, Hou LF, et al. Correlation of ageing precipitates with the corrosion behaviour of Cu-4 wt-% Ti alloys in 3.5 wt.% NaCl solution. Corros Sci. 2016;111:382–390.
  • Laughlin DE, Cahn JW. Ordering in copper-titanium alloys. Metall Trans. 1974;5(4):972–974.
  • Datta A, Soffa WA. The structure and properties of age hardened Cu-Ti alloys. Acta Metall. 1976;24(11):987–1001.
  • Eremenko VN, Buyanov YI, Prima SB. Phase diagram of the system titanium-copper. Soviet Powder Metall Metal Ceramics. 1966;5(6):494–502.
  • Knights R, Wilkes P. The precipitation of titanium in copper and copper-nickel base alloys. Acta Metall. 1973;21(11):1503–1514.
  • Zhang P, Jie J, Yuan G, et al. Influence of cold deformation and Ti element on the microstructure and properties of Cu–Cr system alloys. J Mater Res. 2015;30(13):2073–2080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.