288
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Inhomogeneous strain and recrystallisation of a shot-peened Inconel 625 alloy after annealing

ORCID Icon, , &
Pages 1856-1863 | Received 23 Jan 2019, Accepted 29 Jul 2019, Published online: 12 Aug 2019

References

  • Eiselstein H, Tillack D. The invention and definition of alloy 625. Superalloys 718, 625 Var. Deriv; 1991. p. 1–14.
  • Special Metals Corporation, (2018).
  • Galatolo R, Lanciotti A. Fatigue crack propagation in residual stress fields of welded plates. Int J Fatigue. 1997;19:43–49. doi: 10.1016/S0142-1123(96)00046-1
  • Webster PJ, Ananthaviravakumar N, Hughes DJ, et al. Measurement and modelling of residual stresses in a TIG weld. Appl Phys A Mater Sci Process. 2002;74:s1421–s1423. doi: 10.1007/s003390201703
  • Bahadur A, Kumar BR, Kumar AS, et al. Development and comparison of residual stress measurement on welds by various methods. Mater Sci Technol. 2004;20:261–269. doi: 10.1179/026708304225012332
  • Paradowska A, Price JWH, Ibrahim R, et al. A neutron diffraction study of residual stress due to welding. J Mater Process Technol. 2005;164–165:1099–1105. doi: 10.1016/j.jmatprotec.2005.02.092
  • Akita1 K, Yoshioka Y, Sano Y, et al. X-ray residual stress measurement on weld metal of nickel based alloy. J Soc Mater Sci Japan. 2005;54:710–716. doi: 10.2472/jsms.54.710
  • Chen B, Skouras A, Wang YQ, et al. In situ neutron diffraction measurement of residual stress relaxation in a welded steel pipe during heat treatment. Mater Sci Eng A. 2014;590:374–383. doi: 10.1016/j.msea.2013.10.060
  • Doremus L, Cormier J, Villechaise P, et al. Influence of residual stresses on the fatigue crack growth from surface anomalies in a nickel-based superalloy. Mater Sci Eng A. 2015;644:234–246. doi: 10.1016/j.msea.2015.07.077
  • Garcia C, Lotz T, Martinez M, et al. Fatigue crack growth in residual stress fields. Int J Fatigue. 2016;87:326–338. doi: 10.1016/j.ijfatigue.2016.02.020
  • Kobayashi M, Matsui T, Murakami Y. Mechanism of creation of compressive residual stress by shot peening. Int J Fatigue. 1998;20:351–357. doi: 10.1016/S0142-1123(98)00002-4
  • Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry. J Appl Phys. 1990;68:775–784. doi: 10.1063/1.346783
  • Sano Y, Mukai N, Okazaki K, et al. Residual stress improvement in metal surface by underwater laser irradiation. Nucl Instrum Meth Phys Res Sect B Beam Interact Mater Atoms. 1997;121:432–436. doi: 10.1016/S0168-583X(96)00551-4
  • Kumagai M, Akita K, Itano Y, et al. X-ray diffraction study on microstructures of shot/laser-peened AISI316 stainless steel. J Nucl Mater. 2013;443:107–111. doi: 10.1016/j.jnucmat.2013.07.010
  • Sato S, Wagatsuma K, Suzuki S, et al. Relationship between dislocations and residual stresses in cold-drawn pearlitic steel analyzed by energy-dispersive X-ray diffraction. Mater Charact. 2013;83:152–160. doi: 10.1016/j.matchar.2013.06.017
  • Mathew MD, Parameswaran P, Bhanu Sankara Rao K. Microstructural changes in alloy 625 during high temperature creep. Mater Charact 2008;59:508–513. doi: 10.1016/j.matchar.2007.03.007
  • Evans ND, Maziasz PJ, Shingledecker JP, et al. Microstructure evolution of alloy 625 foil and sheet during creep at 750°C. Mater Sci Eng A. 2008;498:412–420. doi: 10.1016/j.msea.2008.08.017
  • Mathew MD, Bhanu Sankara Rao K, Mannan SL. Creep properties of service-exposed Alloy 625 after re-solution annealing treatment. Mater Sci Eng A. 2004;372:327–333. doi: 10.1016/j.msea.2004.01.042
  • Evans A, Kim S, Shackleton J, et al. Relaxation of residual stress in shot peened Udimet 720Li under high temperature isothermal fatigue. Int J Fatigue. 2005;27:1530–1534. doi: 10.1016/j.ijfatigue.2005.07.027
  • Foss BJ, Gray S, Hardy MC, et al. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000. Acta Mater. 2013;61:2548–2559. doi: 10.1016/j.actamat.2013.01.031
  • Wang Z, Stoica AD, Ma D, et al. Stress relaxation in a nickel-base superalloy at elevated temperatures with in situ neutron diffraction characterization: Application to additive manufacturing. Mater Sci Eng A. 2018;714:75–83. doi: 10.1016/j.msea.2017.12.058
  • Inoue Y, Kikuchi M. Nippon Steel Tech. Rep. 2003, 378. p. 55–61.
  • Yamashita K. Kobe Steel Eng. Reports. 2007, 47. p. 307–312.
  • Kumagai M, Ishiwata M, Ohya S. Residual stress variation due to shot peening and thermal ageing on welded Ni-alloy pipe. Trans JSME. 2018;84:1–10.
  • Messé OMDM, Stekovic S, Hardy MC, et al. Characterization of plastic deformation induced by shot-peening in a Ni-base superalloy. JOM. 2014;66:2502–2515. doi: 10.1007/s11837-014-1184-8
  • Lainé SJ, Knowles KM, Doorbar PJ, et al. Microstructural characterisation of metallic shot peened and laser shock peened Ti–6Al–4V. Acta Mater. 2017;123:350–361. doi: 10.1016/j.actamat.2016.10.044
  • Singh S, Guo Y, Winiarski B, et al. High resolution low kV EBSD of heavily deformed and nanocrystalline Aluminium by dictionary-based indexing. Sci Rep. 2018;8:1–8. doi: 10.1038/s41598-017-17765-5
  • Liu G, Wang SC, Lou XF, et al. Low carbon steel with nanostructured surface layer induced by high-energy shot peening. Scr Mater 2001;44:1791–1795. doi: 10.1016/S1359-6462(01)00738-2
  • Tao NR, Wang ZB, Tong WP, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 2002;50:4603–4616. doi: 10.1016/S1359-6454(02)00310-5
  • Umemoto M, Todaka K, Tsuchiya K. Formation of nanocrystalline structure in carbon steels by ball drop and particle impact techniques. Mater Sci Eng A. 2004;375–377:899–904. doi: 10.1016/j.msea.2003.10.198
  • Shakil M, Ahmad M, Tariq NH, et al. Microstructure and hardness studies of electron beam welded Inconel 625 and stainless steel 304L. Vacuum. 2014;110:121–126. doi: 10.1016/j.vacuum.2014.08.016
  • Chamanfar A, Monajati H, Rosenbaum A, et al. Microstructure and mechanical properties of surface and subsurface layers in broached and shot-peened Inconel-718 gas turbine disc fir-trees. Mater Charact 2017;132:53–68. doi: 10.1016/j.matchar.2017.08.002
  • Chen Z, Colliander MH, Sundell G, et al. Nano-scale characterization of white layer in broached Inconel 718. Mater Sci Eng A. 2017;684:373–384. doi: 10.1016/j.msea.2016.12.045
  • IAMP database (SCM-AXS), (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.