114
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

The titanium structure after a thermoplastic compression at elevated temperatures

ORCID Icon, , &
Pages 1997-2003 | Received 05 Feb 2019, Accepted 26 Aug 2019, Published online: 09 Sep 2019

References

  • Ahmed M, Wexler D, Casillas G, et al. Strain rate dependence of deformation-induced transformation and twinning in a metastable titanium alloy. Acta Mater. 2016;104:190–200. doi: 10.1016/j.actamat.2015.11.026
  • Mazurkiewicz A, et al. Nanonauki i nanotechnologie: Stan i perspektywy rozwoju [Nanosciences and nanotechnologies. State and development prospects]. Radom: Published by Institute for Sustainable Technologies; 2007.
  • Bylica A, Sieniawski J. Tytan i jego stopy [Titanium and its alloys]. Warsaw: PWN; 1985.
  • Zhang S, Chun Wang Y, Zhilyaev AP, et al. Temperature and strain rate dependence of microstructural evolution and dynamic mechanical behavior in nanocrystalline Ti. Mat Sci Eng A. 2015;641:29–36. doi: 10.1016/j.msea.2015.06.035
  • Zhang ZX, Qu SJ, Feng AH, et al. Achieving grain refinement and enhanced mechanical properties in Ti–6Al–4 V alloy produced by multidirectional isothermal forging. Mat Sci Eng A. 2017;692:127–138. doi: 10.1016/j.msea.2017.03.024
  • Semenova I, Salimgareeva G, Da Costa G, et al. Enhanced strength and Ductility of Ultrafine-Grained Ti Processed by severe plastic deformation. Adv Eng Mater. 2010;12(8):803–807. doi: 10.1002/adem.201000059
  • Ushkov SS, Kudryavtsev AS, Karasyev EA. Zakonomiernosti razpredelenya elementov vnedrenya v litom i deformirovannom psevdo- α- splave titana [Distribution of interstage elements in a cast and deformed pseudo-α alloy of titanium]. Metallov. Term. Obrab. Metallov. 1999;9:44–47.
  • Topolski K, Garbacz H, Pachla W, et al. Bulk nanostructured titanium fabricated by hydrostatic extursion. Phys Status Solidi (C). 2010;7:1391–1394. doi: 10.1002/pssc.200983396
  • Sinha S, Gurao NP. In situ electron backscatter diffraction study of twinning in commercially pure titanium during tension-compression deformation and annealing. Mater Des. 2017;116:686–693. doi: 10.1016/j.matdes.2016.10.060
  • Li H, et al. Comparison of the deformation behaviour of commercially pure titanium and Ti-5Al-2.5Sn (wt.%) at 296 and 728K. Philos. Mag. 2013;93:2875–2895. doi: 10.1080/14786435.2013.791752
  • Garbacz H, Semenova I, Zherebtsov S, et al. Nanocrystalline titanium. Amsterdam: Elsveir; 2019.
  • Nemat-Nasser S, Guo WG, Cheng JY. Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater. 1999;47(13):3705–3720. doi: 10.1016/S1359-6454(99)00203-7
  • Leyens C, Peters M, editors. Titanium and titanium alloys: Fundamentals and applications. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2003.
  • Fernandesa DJ, Elias CN, Valiev RZ. Properties and Performance of Ultrafine Grained titanium for Biomedical applications. Mater Res. 2015;18(6):1163–1175. doi: 10.1590/1516-1439.005615
  • Zherebtsov SV. Formation of submicrocrystalline in titanium and its alloy under serve plastic deformation. Defect Diffus Forum. 2002;208–209:237–240. doi: 10.4028/www.scientific.net/DDF.208-209.237
  • Dyakonov GS, Zherebtsov SV, Silishchev GA. Evolutsya mikrostruktury titana WT1-0 v khode komnatnoy i kriogennoy prokatki [Evolution of the WT1-0 titanium microstructure during rolling in room and cryogenic temperature]. Fiz. Tvyordovo Tela. 2013;2(2):72–78.
  • Zhu JT, et al. Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res. 2003;18(8):1908–1917. doi: 10.1557/JMR.2003.0267
  • Xu F, et al. Effect of twinning on microstructure and texture evolutions of pure Ti during dynamic plastic deformation. Mater Sci Eng: A. 2013;564:22–33. doi: 10.1016/j.msea.2012.11.097
  • Wang T, Li B, Wang Z, et al. Influence mechanism of the initial dislocation boundary on the adiabatic shear sensitivity of commercial pure titanium. Mater Sci Eng: A. 2016;676:1–9. doi: 10.1016/j.msea.2016.08.089
  • Zheng Z, Waheed S, Balint DS, et al. Slip transfer across phase boundaries in dual phase titanium alloys and the effect on strain rate sensitivity. Int J Plasticity. 2018;104:23–38. doi: 10.1016/j.ijplas.2018.01.011
  • Sozańska M, Chmiela B. Ocena możliwości stosowania metody EBSD w badaniach mikrostruktury stopów tytanu [Usefulness evaluation of EBSD method application in investigation of microstructure of titanium alloys]. Inz Mater. 2012;33(4):311–314.
  • Zeng Z, Zhang Y, Jansson S. Deformation behavior of commercially pure titanium during simple hot pression. Mater Des. 2009;30(8):3105–3111. doi: 10.1016/j.matdes.2008.12.002
  • Zhao P, Wang Y, Niezgoda SR. Microstructural and micromechanical evolution during dynamic recrystallization. Int J Plasticity. 2018;100:52–68. doi: 10.1016/j.ijplas.2017.09.009
  • Flower HM. Microstructural development in relation to hot working of titanium alloys. Mater Sci Tech. 1990;6(11):1082–1092. doi: 10.1179/mst.1990.6.11.1082
  • Ko YG, Lee CS, Shin DH, et al. Low-Temperature Superplasticity of Ultra-Fine-Grained Ti-6Al-4V Processed by equal-channel angular pressing. Metall Mater Trans A. 2006;37a:381–391. doi: 10.1007/s11661-006-0008-z
  • Huang K, Loge RE. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548–574. doi: 10.1016/j.matdes.2016.09.012
  • Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci. 2014;60:130–207. doi: 10.1016/j.pmatsci.2013.09.002
  • Bańczerowski J, Jeleńkowski J, Skalski K, et al. Structure and mechanism of the deformation of Grade 2 titanium in plastometric studies. Mater Sci Technol. 2018. doi:10.1080/02670836.2018.1443608
  • Čadek J. Creep kovových materiálů [Creep of metal materials]. Praha: Academia Praha; 1984; p. 129–134.
  • Jonas JJ, Sellars CM, Tegart WJ. Strength and structure under hot-working conditions. Metall Rev. 1969;130:1–23.
  • Piątkowski A. Nowe możliwości badania struktury materiałów metodą dyfrakcji elektronów wstecznie rozproszonych [New possibilities of studying the structure of materials by the method of backscattered electrons diffraction]. LAB: Laboratoria, Apartura, Badania. 2005;10(4):21–24.
  • Li Z, Wang B, Zhao S. Dynamic deformation and failure of ultrafine-grained titanium. Acta Mater. 2017;125:210–218. doi: 10.1016/j.actamat.2016.11.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.