262
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Deformation behaviour of ultrafine grained Mg–7Gd–5Y–1.2Nd–0.5Zr alloy under high strain rates

, , , , ORCID Icon &
Pages 2225-2233 | Received 06 Jun 2019, Accepted 10 Sep 2019, Published online: 22 Sep 2019

References

  • Polmear IJ. Magnesium alloys and applications. Mater Sci Technol. 1994;10(1):1–16. doi: 10.1179/mst.1994.10.1.1
  • Mordike BL, Ebert T. Magnesium: properties–applications–potential. Mater Sci Eng A. 2001;302(1):37–45. doi: 10.1016/S0921-5093(00)01351-4
  • Aghion E, Bronfin B. Magnesium alloys development towards the 21st century. Mater Sci Forum. 2000;350–351:19–30. doi: 10.4028/www.scientific.net/MSF.350-351.19
  • Furuya H, Kogiso N, Matunaga S, et al. Applications of magnesium alloys for aerospace structure systems. Mater Sci Forum. 2000;350–351:341–348. doi: 10.4028/www.scientific.net/MSF.350-351.341
  • Ding W, Fu P, Peng L, et al. Advanced magnesium alloys and their applications in aerospace. Spacecra Environ Eng. 2011;28(2):103–109.
  • Kleiner S, Uggowitzer PJ. Mechanical anisotropy of extruded Mg–6%Al–1%Zn alloy. Mater Sci Eng A. 2004;379(1–2):258–263. doi: 10.1016/j.msea.2004.02.020
  • Ball E A, Prangnell P B. Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scr Metall Mater. 1994;31(2):111–116. doi: 10.1016/0956-716X(94)90159-7
  • Bohlen J, Nurnberg MR, Senn JW, et al. The texture and anisotropy of magnesium zinc-rare earth alloy sheets. Acta Mater. 2007;55(6):2101–2112. doi: 10.1016/j.actamat.2006.11.013
  • Yin DL, Wang JT, Liu JQ, et al. On tension-compression yield asymmetry in an extruded Mg–3Al–1Zn alloy. J Alloys Compd. 2009;478(1–2):789–795. doi: 10.1016/j.jallcom.2008.12.033
  • Yin SM, Wang CH, Diao YD, et al. Influence of grain size and texture on the yield asymmetry of Mg–3Al–1Zn alloy. J Mater Sci Technol. 2011;27(1):29–34. doi: 10.1016/S1005-0302(11)60021-2
  • Yongjun L, Kui Z, Xinggang L. Mechanical properties and fracture behavior of EW75 alloy under different conditions. 2011 Summary of Papers of China Mater Semin. 2011.
  • Mao PL, Yu JC, Liu Z, et al. Dynamic mechanical property and failure behavior of extruded Mg–Gd–Y alloy under high strain rate compression. Trans Nonferrous Met Sco China. 2013;23(4):889–897. doi: 10.1016/S1003-6326(13)62544-3
  • Zhang F, Liu Z, Mao P, et al. The modified temperature term on Johnson Cook model for AZ31 magnesium alloy. Materialwiss und Werkst. 2018;49(8):1040–1052. doi: 10.1002/mawe.201700264
  • Yanyu L, Pingli M, Zheng L, et al. Theoretical Calculation of Schmid Factor and Its Application under high strain rate deformation in magnesium alloys. Acta Metall Sin. 2018;54(6):950–958.
  • Liu Y, Mao P, Feng Z, et al. Effect of temperature on the anisotropy of AZ31 magnesium alloy rolling sheet under high strain rate deformation. Philos Mag. 2018;98(12):1–19. doi: 10.1080/14786435.2018.1427896
  • Ulacia I, Dudamell NV, Gálvez F, et al. Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. Acta Mater. 2010;58:2988–2998. doi: 10.1016/j.actamat.2010.01.029
  • Wang YN, Huang JC. Texture analysis in hexagonal materials. Mater Chem Phys. 2003;81(1):11–26. doi: 10.1016/S0254-0584(03)00168-8
  • Jiang L, Jonas JJ, Mishra RK, et al. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Mater. 2007;55:3899–3910. doi: 10.1016/j.actamat.2007.03.006
  • Watanabe H, Ishikawa K. Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy. Mater Sci Eng A. 2009;523(1–2):304–311. doi: 10.1016/j.msea.2009.06.019
  • Barnett MR. A Taylor model based description of the proof stress of magnesium AZ31 during hot working. Metall Mater Trans A. 2003;34(9):1799–1806. doi: 10.1007/s11661-003-0146-5
  • Burke EC, Hibbard WR. Plastic deformation of magnesium single crystals. JOM. 1952;4(3):295–303. doi: 10.1007/BF03397694
  • Wan G, Wu BL, Zhang YD, et al. Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy. Mater Sci Eng A. 2010;527(12):2915–2924. doi: 10.1016/j.msea.2010.01.023
  • Barnett M R, Keshavarz Z, Beer AG, et al. Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 2004;52(17):5093–5103. doi: 10.1016/j.actamat.2004.07.015
  • Yang Q, Ghosh, AK. Production of ultrafine-grain microstructure in Mg alloy by alternate biaxial reverse corrugation. Acta Mater. 2006;54(19):5147–5158. doi: 10.1016/j.actamat.2006.06.045
  • Yang Q, Ghosh AK. Formability of ultrafine-grain Mg Alloy AZ31B at warm temperatures. Metall Mater Trans A. 2008;39(11):2781–2796. doi: 10.1007/s11661-008-9551-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.