635
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

Microstructure and mechanical properties of as-deposited and heat-treated additive manufactured 9Cr steel

, , &
Pages 2234-2242 | Received 31 May 2019, Accepted 12 Sep 2019, Published online: 25 Sep 2019

References

  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549(7672):365–369. doi: 10.1038/nature23894
  • Gordon J, Hochhalter J, Haden C, et al. Enhancement in fatigue performance of metastable austenitic stainless steel through directed energy deposition additive manufacturing. Mater Des. 2019;168:107630. doi: 10.1016/j.matdes.2019.107630
  • Chen J, Yang YQ, Song CH, et al. Interfacial microstructure and mechanical. Properties of 316L /CuSn10 multi-material bimetallic structure fabricated by selective laser melting. Mater Sci Eng A Struct Mater Prop Microstruct Process. 2019;752:75–85. doi: 10.1016/j.msea.2019.02.097
  • Li RD, Chen H, Zhu HB, et al. Effect of aging treatment on the microstructure and mechanical properties of Al-3.02Mg-0.2Sc-0.1Zr alloy printed by selective laser melting. Mater Des. 2019;168:8.
  • Bermingham MJ, StJohn DH, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta Mater. 2019;168:261–274. doi: 10.1016/j.actamat.2019.02.020
  • Yao XL, Moon SK, Lee BY, et al. Effects of heat treatment on microstructures and tensile properties of IN718/TiC nanocomposite fabricated by selective laser melting. Int J Precis Eng Manuf. 2017;18(12):1693–1701. doi: 10.1007/s12541-017-0197-y
  • Tan CL, Zhou KS, Ma WY, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater Des. 2017;134:23–34. doi: 10.1016/j.matdes.2017.08.026
  • Khorasani AM, Gibson I, Ghaderi A, et al. Investigation on the effect of heat treatment and process parameters on the tensile behaviour of SLM Ti-6Al-4 V parts. Int J Adv Manuf Technol. 2019;101(9-12):3183–3197. doi: 10.1007/s00170-018-3162-8
  • Syed AK, Awd M, Walther F, et al. Microstructure and mechanical properties of as-built and heat-treated electron beam melted Ti-6Al-4 V. Mater Sci Technol. 2019;35(6):653–660. doi: 10.1080/02670836.2019.1580434
  • Chen XZ, Su CC, Wang YF, et al. Cold metal transfer (CMT) based wire and arc additive manufacture (WAAM) system. J Surf Ingestig. 2018;12(6):1278–1284. doi: 10.1134/S102745101901004X
  • Wang TT, Zhang YB, Wu ZH, et al. Microstructure and properties of die steel fabricated by WAAM using H13 wire. Vacuum. 2018;149:185–189. doi: 10.1016/j.vacuum.2017.12.034
  • Ortega AG, Galvan LC, Deschaux-Beaume F, et al. Effect of process parameters on the quality of aluminium alloy Al5Si deposits in wire and arc additive manufacturing using a cold metal transfer process. Sci Technol Weld Join. 2018;23(4):316–332. doi: 10.1080/13621718.2017.1388995
  • Horgar A, Fostervoll H, Nyhus B, et al. Additive manufacturing using WAAM with AA5183 wire. J Mater Process Technol. 2018;259:68–74. doi: 10.1016/j.jmatprotec.2018.04.014
  • Derekar KS. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater Sci Technol. 2018;34(8):895–916. doi: 10.1080/02670836.2018.1455012
  • Karthikeyan T, Dash MK, Ravikirana, et al. Effect of prior-austenite grain refinement on microstructure, mechanical properties and thermal embrittlement of 9Cr-1Mo-0.1C steel. J Nucl Mater. 2017;494:260–277. doi: 10.1016/j.jnucmat.2017.07.019
  • Saini N, Pandey C, Mahapatra MM, et al. A comparative study of ductile-brittle transition behavior and fractography of P91 and P92 steel. Eng Fail Anal. 2017;81:245–253. doi: 10.1016/j.engfailanal.2017.06.044
  • Zheng QK, Shi YF, Rao SX, et al. Influence of strain aging on fatigue behavior and structural evolution of P91 steel. Metallogr Microstruct Anal. 2017;6(5):390–397. doi: 10.1007/s13632-017-0377-2
  • Zhai Y, Huang B, Mao X, et al. Effect of hot isostatic pressing on microstructure and mechanical properties of CLAM steel produced by selective laser melting. J Nucl Mater. 2019;515:111–121. doi: 10.1016/j.jnucmat.2018.12.028
  • Huang B, Zhai Y, Liu S, et al. Microstructure anisotropy and its effect on mechanical properties of reduced activation ferritic/martensitic steel fabricated by selective laser melting. J Nucl Mater. 2018;500:33–41. doi: 10.1016/j.jnucmat.2017.12.011
  • Silwal B, Li L, Deceuster A, et al. Effect of postweld heat treatment on the toughness of heat-affected zone for grade 91 steel. Weld J. 2013;92(92):80s–87s.
  • Pandey C, Giri A, Mahapatra M, et al. Characterization of microstructure of HAZs in as-welded and service condition of P91 pipe weldments. Met Mater Int. 2017;23(1):148–162. doi: 10.1007/s12540-017-6394-5
  • El-Salam MAE-RA, El-Mahallawi I, El-Koussy M. International heat treatment and surface engineering weld joints part 1–microstructure influence of heat input and post-weld heat treatment on boiler steel P91 (9Cr–1Mo–V–Nb) weld joints. Int Heat Treat Surf Eng. 2013;7:23–31. doi: 10.1179/1749514813Z.00000000050
  • Abd El-Rahman Abd El-Salam M, El-Mahallawi I, El-Koussy M. Influence of heat input and post-weld heat treatment on boiler steel P91 (9Cr–1Mo–V–Nb) weld joints part 2–mechanical properties. Int Heat Treat Surf Eng. 2013;7(1):32–37. doi: 10.1179/1749514813Z.00000000051
  • Manugula VL, Rajulapati KV, Reddy GM, et al. Role of evolving microstructure on the mechanical properties of electron beam welded ferritic-martensitic steel in the as-welded and post weld heat treated states. Mater Sci Eng A Struct Mater Prop Microstruct Process. 2017;698:36–45. doi: 10.1016/j.msea.2017.05.036
  • Zeman M. Weldability of 9Cr-1Mo-Nb, V P91 steel intended for service in the power industry. Weld Int. 1996;10(5):370–380. doi: 10.1080/09507119609549012
  • Baltusnikas A, Lukosiute I, Makarevicius V, et al. Influence of thermal exposure on structural changes of M23C6 carbide in P91 steel. J Mater Eng Perform. 2016;25(5):1945–1951. doi: 10.1007/s11665-016-2002-y
  • Li HJ, Mitchell D. Microstructural characterization of P91 steel in the virgin, service exposed and post-service re-normalized conditions. Steel Res Int. 2013;84(12):1302–1308. doi: 10.1002/srin.201300055
  • Barbadikar DR, Deshmukh GS, Maddi L, et al. Effect of normalizing and tempering temperatures on microstructure and mechanical properties of P92 steel. Int J Pressure Vessels Pip. 2015;132–133:97–105. doi: 10.1016/j.ijpvp.2015.07.001
  • Pandey C, Mahapatra MM, Kumar P, et al. Characterization of cast and forged (C&F) Gr. 91 steel in different heat treatment condition. Trans Indian Inst Met. 2017: 1–20.
  • Pandey C, Mahapatra MM, Kumar P, et al. Microstructure and mechanical property relationship for different heat treatment and hydrogen level in multi-pass welded P91 steel joint. J Manuf Process. 2017;28:220–234. doi: 10.1016/j.jmapro.2017.06.009
  • Choudhary BK, Christopher J, Palaparti DPR, et al. Influence of temperature and post weld heat treatment on tensile stress-strain and work hardening behaviour of modified 9Cr-1Mo steel. Mater Des. 2013;52:58–66. doi: 10.1016/j.matdes.2013.05.020
  • Takagi H, Sasahara H, Abe T, et al. Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing. Addit Manuf. 2018;24:498–507. doi: 10.1016/j.addma.2018.10.026
  • Pandey C, Mahapatra M. Effect of groove design and post-weld heat treatment on microstructure and mechanical properties of P91 steel weld. J Mater Eng Perform. 2016;25(7):2761–2775. doi: 10.1007/s11665-016-2127-z
  • Gao C, Chen XZ, Su CC, et al. Microstructure and mechanical properties of 9Cr martensitic heat-resistant steel fabricated by wire and arc additive manufacture technology. Mater Express. 2019;9(2):179–184. doi: 10.1166/mex.2019.1485

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.