217
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Fe–TiB2 composites produced through casting technique

Pages 299-306 | Received 12 Mar 2019, Accepted 11 Dec 2019, Published online: 30 Dec 2019

References

  • Rana R. Low-density steels. JOM. 2014;66:1730–1733. doi: 10.1007/s11837-014-1137-2
  • Rana R. High modulus steels. Can Metall Q. 2014; 53:241 doi: 10.1179/0008443314Z.000000000178
  • Krauss G. Steels: processing, structure, and performance. Materials Park (OH): ASM International; 2005.
  • Bhadeshia HK, Honeycombe R. Steels: microstructure and properties. Oxford: Butterworth-Heinemann; 2006.
  • Ashby MF, Materials selection in mechanical design. Burlington, MA: Butterworth-Heinemann, 2005.
  • Whitmore LC, Ababei G, Budeanu LC, et al. Titanium diboride precipitation in Fe79.7−xTixB20Nb0.3 glassy ribbons. J Alloys Compd. 2016; 678:486 doi: 10.1016/j.jallcom.2016.03.223
  • Raabe D, Ponge D, Dmitrieva O, et al. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility. Scr Mater. 2009;60:1141 doi: 10.1016/j.scriptamat.2009.02.062
  • Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: example of a 9 wt.% medium Mn steel. Acta Mater. 2015;86:182 doi: 10.1016/j.actamat.2014.12.021
  • Zhang CJ, Kong FT, Xiao SL, et al. Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB + TiC) reinforcements. Mater Sci Eng A 2012;548:152. doi: 10.1016/j.msea.2012.04.004
  • Halpiri JC, Kardos JL. The Halpin-Tsai equations: a review. Polym Eng Sci 1976;16:344 doi: 10.1002/pen.760160512
  • Tanaka K, Saito T. Phase equilibria in TiB2-reinforced high modulus steel. J Phase Equil. 1999;20:207. doi: 10.1361/105497199770335730
  • Bacon DH, Edwards L, Moffatt JE, et al. Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles. Acta Mater 2011;59:3373. doi: 10.1016/j.actamat.2011.02.012
  • Li B, Liu Y, Cao H, et al. Rapid synthesis of TiB2/Fe composite in situ by spark plasma sintering. J Mater Sci 2009;44:3909 doi: 10.1007/s10853-009-3527-3
  • Wu N, Xue F, Yang H, et al. Effects of TiB2 particle size on the microstructure and mechanical properties of TiB2-based composites. Ceram Int. 2019;45:1370. doi: 10.1016/j.ceramint.2018.08.270
  • Feng Y. Strengthening from ceramic phases [PhD thesis]. Aachen: RWTH; 2013.
  • Pirtovsek TV, Kugler G, Tercelj M. The behaviour of the carbides of ledeburitic AISI D2 tool steel during multiple hot deformation cycles. Mater Charact. 2013;83:97 doi: 10.1016/j.matchar.2013.06.008
  • Munro RG. Material properties of titanium diboride. J Res Natl Inst Stand Technol. 2000;105:709. doi: 10.6028/jres.105.057
  • Kulikowski Z, Wisbey A, Godfrey TMT, et al. Mechanical properties of high performance lightweight steels. Mater Sci Technol. 2000;16:925 doi: 10.1179/026708300101508702
  • Kulinowski Z, Godfrey TMT, Wisbey A, et al. Mechanical and microstructural behaviour of a particulate reinforced steel for structural applications. Mater Sci Technol. 2000;16:1453–1464. doi: 10.1179/026708300101507451
  • Huang MX, He BB, Wang X, et al. Interfacial plasticity of a TiB2-reinforced steel matrix composite fabricated by eutectic solidification. Scr Mater. 2015;99:13 doi: 10.1016/j.scriptamat.2014.11.015
  • Dammak M, Gasperini M, Barbier D. Microstructural evolution of iron based metalematrix composites submitted to simple shear. Mater Sci Eng A. 2014;616:123 doi: 10.1016/j.msea.2014.08.004
  • Bacon DH, Edwards L, Moffatt JE, et al. Fatigue and fracture of a 316 stainless steel metal matrix composite reinforced with 25% titanium diboride. Int J Fatigue. 2013;48:39 doi: 10.1016/j.ijfatigue.2012.09.016
  • Fernandez RA, Springer H, Szczepaniak A, et al. In-situ metal matrix composite steels: effect of alloying and annealing on morphology, structure and mechanical properties of TiB2 particle containing high modulus steels. Acta Mater. 2016;107:38 doi: 10.1016/j.actamat.2016.01.048
  • Springer H, Fernandez RA, Duarte MJ, et al. Microstructure refinement for high modulus in-situ metal matrix composite steels via controlled solidification of the system Fe–TiB2. Acta Mater. 2015;96:47. doi: 10.1016/j.actamat.2015.06.017
  • Ponnambalam V, Poon SJ, Shiflet GJ. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J Mater Res. 2004;19:1320 doi: 10.1557/JMR.2004.0176
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 1992;7:1564. doi: 10.1557/JMR.1992.1564
  • Metallic materials-instrumented indentation test for hardness and materials parameters. ISO 14577. ISO Central Secretariat, Geneva Switzerland. 2002.
  • Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging,. Acta Mater 2011;59:658 doi: 10.1016/j.actamat.2010.10.002
  • Calcagnotto M, Ponge D, Demir E, et al. Effect of grain refinement to strength and toughness of dual-phase steels. Mater Sci Eng A. 2010;527:2738 doi: 10.1016/j.msea.2010.01.004
  • Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48:279. doi: 10.1016/S1359-6454(99)00300-6
  • Inoue A, Shen BL, Chang CT. Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1−xCox)0.75B0.2Si0.05]96Nb4 system. Acta Mater. 2004;52:4093. doi: 10.1016/j.actamat.2004.05.022
  • Suryanarayana C, Inoue A. Bulk metallic glasses. Boca Raton: Taylor and Francis Group, LLC; 2011.
  • Antoni-Zdziobek A, Gospodinova M, Bonnet F, et al. Solidification paths in the iron-rich part of the Fe-Ti-B ternary System. J Alloys Compd. 2016;657:302 doi: 10.1016/j.jallcom.2015.10.104
  • Yan W, Pun CL, Simon GP. Conditions of applying Oliver-Pharr method to the nanoindentation of particles in composites. Compos Sci Technol. 2012;72:1147 doi: 10.1016/j.compscitech.2012.03.019
  • Anstis GR, Chantikul P, Lawn BR, et al., A critical evaluation of indentation techniques for measuring fracture toughness: I – Direct crack measurement. J Am Ceram Soc. 1981;64:533. doi: 10.1111/j.1151-2916.1981.tb10320.x
  • Schuh CA, Nanoindentation studies of materials. Mater Today, 2006;9:32. doi: 10.1016/S1369-7021(06)71495-X
  • Cha L, Lartigue-Korinek S, Walls M, et al. Interface structure and chemistry in a novel steels based composite Fe-TiB2 obtained by eutectic solidification. Acta Mater. 2012;60:6382 doi: 10.1016/j.actamat.2012.08.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.