239
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effects of Al content on the high-temperature mechanical properties of Al-TRIP steel

ORCID Icon, &
Pages 484-491 | Received 28 Sep 2019, Accepted 29 Dec 2019, Published online: 08 Jan 2020

References

  • Tomita Y, Iwamoto T. Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties. Int J Mech Sci. 1995;37:1295–1305. doi: 10.1016/0020-7403(95)00039-Z
  • Chatterjee S, Murugananth M, Bhadeshia H. δ-TRIP steel. Mater Sci Technol. 2007;23:819–827. doi: 10.1179/174328407X179746
  • Yi HL, Sun L, Xiong XC. Challenges in the formability of the next generation of automotive steel sheets. Mater Sci Technol. 2018;34:1112–1117. doi: 10.1080/02670836.2018.1424383
  • Yi HL, Lee KY, Bhadeshia H. Extraordinary ductility in Al-bearing δ-TRIP steel. Proc R Soc A Math Phys Eng Sci. 2011;467:234–243. doi: 10.1098/rspa.2010.0127
  • Shiri SG, Jahromi SAJ, Palizdar Y, et al. Unexpected effect of Nb addition as a microalloying element on mechanical properties of δ-TRIP steels. J Iron Steel Res Int. 2016;23:988–996. doi: 10.1016/S1006-706X(16)30148-0
  • Kaar S, Krizan D, Schwabe J, et al. Influence of the Al and Mn content on the structure–property relationship in density reduced TRIP-assisted sheet steels. Mater Sci Eng A. 2018;735:475–486. doi: 10.1016/j.msea.2018.08.066
  • Choi YJ, Suh DW, Bhadeshia H. Retention of δ-ferrite in aluminium-alloyed TRIP-assisted steels. Proc R Soc A Math Phys Eng Sci. 2012;468:2904–2914. doi: 10.1098/rspa.2012.0082
  • Xiong XC, Sun L, Wang JF, et al. Properties assessment of the first industrial coils of low-density duplex δ-TRIP steel. Mater Sci Technol. 2016;32:1403–1408. doi: 10.1080/02670836.2015.1130364
  • Yi HL, Ghosh SK, Liu WJ, et al. Non-equilibrium solidification and ferrite in δ-TRIP steel. Mater Sci Technol. 2010;26:817–823. doi: 10.1179/174328409X428918
  • Cui H, Zhang KT, Wang Z, et al. Formation of surface depression during continuous casting of high-Al TRIP steel. Metals (Basel). 2019;9:204. doi: 10.3390/met9020204
  • Ji CX, Cui Y, Zeng Z, et al. Continuous casting of high-Al steel in Shougang Jingtang steel works. J Iron Steel Res Int. 2015;22:53–56. doi: 10.1016/S1006-706X(15)30138-2
  • Su H, Gunawadarna WD, Tuling A, et al. Influence of Al and P additions on hot ductility of steels. Mater Sci Technol. 2007;23:1357–1366. doi: 10.1179/174328407X179737
  • Tuling A, Banerjee JR, Mintz B. Influence of peritectic phase transformation on hot ductility of high aluminium TRIP steels containing Nb. Mater Sci Technol. 2011;27:1724–1731. doi: 10.1179/1743284711Y.0000000013
  • Kang SE, Tuling A, Banerjee JR, et al. Hot ductility of TWIP steels. Mater Sci Technol. 2011;27:95–100. doi: 10.1179/026708309X12506933873387
  • Liu H, Liu J, Wu B, et al. Effect of Mn and Al contents on hot ductility of high alloy Fe–xMn–C–yAl austenite TWIP steels. Mater Sci Eng A. 2017;708:360–374. doi: 10.1016/j.msea.2017.10.001
  • Qaban A, Mintz B, Kang SE, et al. Hot ductility of high Al TWIP steels containing Nb and Nb–V. Mater Sci Technol. 2017;33:1645–1656. doi: 10.1080/02670836.2017.1309097
  • Xiong ZP, Kostryzhev AG, Stanford NE, et al. Effect of deformation on microstructure and mechanical properties of dual phase steel produced via strip casting simulation. Mater Sci Eng A. 2016;651:291–305. doi: 10.1016/j.msea.2015.10.120
  • He Y, Liu J, Qiu S, et al. Microstructure and high temperature mechanical properties of as-cast FeCrAl alloys. Mater Sci Eng A. 2018;726:56–63. doi: 10.1016/j.msea.2018.04.039
  • He Y, Liu J, Han Z, et al. Phase transformation and precipitation during solidification of FeCrAl alloy for automobile exhaust gas purifying systems. J Alloy Compd. 2017;714:251–257. doi: 10.1016/j.jallcom.2017.04.181
  • Li ZC, Ding H, Cai ZH. Mechanical properties and austenite stability in hot-rolled 0.2C–1.6/3.2Al–6Mn–Fe TRIP steel. Mater Sci Eng A. 2015;639:559–566. doi: 10.1016/j.msea.2015.05.061
  • Li ZC, Misra RDK, Cai ZH, et al. Mechanical properties and deformation behavior in hot-rolled 0.2C–1.5/3Al–8.5 Mn–Fe TRIP steel: The discontinuous TRIP effect. Mater Sci Eng A. 2016;673:63–72. doi: 10.1016/j.msea.2016.07.023
  • Nakagawa T, Umeda T, Murata J, et al. Deformation behavior during solidification of steels. ISIJ Int. 1995;35:723–729. doi: 10.2355/isijinternational.35.723
  • Yu CH, Suzuki M, Shibata H, et al. Simulation of crack formation on solidifying steel shell in continuous casting mold. ISIJ Int. 1996;36:S159–S162. doi: 10.2355/isijinternational.36.Suppl_S159
  • Suzuki HG, Nishimura S, Nakamura Y. Improvement of hot ductility of continuously cast carbon steels. Trans Iron Steel Inst Jpn. 1984;24:54–59. doi: 10.2355/isijinternational1966.24.54
  • Suzuki HG, Nishimura S, Imamura J, et al. Hot ductility in steels in the temperature range between 900 and 600C. Trans Iron Steel Inst Jpn. 1981;67:1180–1189. doi: 10.2355/tetsutohagane1955.67.8_1180
  • Suzuki HG, Nishimura S, Yamaguchi S. Characteristics of hot ductility in steels subjected to the melting and solidification. Trans Iron Steel Inst Jpn. 1982;22:48–56. doi: 10.2355/isijinternational1966.22.48
  • Zhu LG, Lu WG, Han YH. Study on high temperature mechanical properties of bearing steel GCr15. Mater Sci Forum. 2008;575:1101–1105. doi: 10.4028/www.scientific.net/MSF.575-578.1101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.