221
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Design of an effective heat treatment involving intercritical hardening for high-strength–high elongation of 0.2C–1.5Al–(6–8.5)Mn-Fe TRIP steels: microstructural evolution and deformation behaviour

, , , , , , & show all
Pages 500-510 | Received 13 Aug 2019, Accepted 28 Dec 2019, Published online: 13 Jan 2020

References

  • Mertinger V, Nagy E, Tranta F, et al. Strain-induced martensitic transformation in textured austenitic stainless steels. Mater Sci Eng A. 2008;481–482:718–722. doi: 10.1016/j.msea.2007.02.165
  • Oliver S, Jones TB, Fourlaris G. Dual phase versus TRIP strip steels: comparison of dynamic properties for automotive crash performance. Mater Sci Technol. 2007;23(4):423–431. doi: 10.1179/174328407X168937
  • Sugimoto K, Iida T, Sakaguchi J, et al. Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel. ISIJ Int. 2000;40(9):902–908. doi: 10.2355/isijinternational.40.902
  • De Cooman BC. Structure-properties relationship in TRIP steels containing carbide-free bainite. Opin Solid St M. 2004;8(3–4):285–303. doi: 10.1016/j.cossms.2004.10.002
  • Li HP, Jiang R, He LF, et al. Influence of deformation degree and cooling rate on microstructure and phase transformation temperature of B1500HS steel. Acta Metall Sin (Engl Lett). 2018;31(1):33–47. doi: 10.1007/s40195-017-0594-3
  • Samek L, Moor ED, Penning J, et al. Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy multiphase high-strength steels. Metall Mater Trans. 2006;37(1):109–124. doi: 10.1007/s11661-006-0157-0
  • Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plasticity. 2000;16(10–11):1391–1409. doi: 10.1016/S0749-6419(00)00015-2
  • Yoo JD, Park KT. Microband-induced plasticity in a high Mn-Al-C light steel. Mater Sci Eng A. 2008;496(1–2):417–424. doi: 10.1016/j.msea.2008.05.042
  • Lee S, Lee SJ, De Cooman BC. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties. Scr Mater. 2011;65(3):225–228. doi: 10.1016/j.scriptamat.2011.04.010
  • Shi J, Sun XJ, Wang MQ, et al. Enhanced work-hardening behaviors and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scr Mater. 2010;63(8):815–818. doi: 10.1016/j.scriptamat.2010.06.023
  • Merwin MJ. Low-carbon manganese TRIP steels. Sci Forum. 2007;539–543:4327–4332. doi: 10.4028/www.scientific.net/MSF.539-543.4327
  • Lee S, Lee SJ, Kumar SS, et al. Localized deformation in multiphase ultra-fine-grained 6 pct Mn transformation-induced plasticity steel. Metall Mater Trans A. 2011;42(12):3638–3651. doi: 10.1007/s11661-011-0636-9
  • Gibbs PJ, Moor ED, Merwin MJ, et al. Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel. Metall Mater Trans A. 2011;42(12):3691–3702. doi: 10.1007/s11661-011-0687-y
  • Miller RL. Ultrafine-grained microstructures and mechanical properties of alloy steels. Metall Mater Trans A. 1972;3(4):905–912. doi: 10.1007/BF02647665
  • Li ZC, Misra RDK, Ding H, et al. The significant impact of pre-strain on the structure-mechanical properties relationship in cold-rolled medium manganese TRIP steel. Mater Sci Eng A. 2018;712:206–213. doi: 10.1016/j.msea.2017.11.112
  • Li ZC, Zhang XT, Mou YJ, et al. The impact of intercritical annealing in conjunction with warm deformation process on microstructure, mechanical properties and TRIP effect in medium-Mn TRIP steels. Mater Sci Eng A. 2019;746:363–371. doi: 10.1016/j.msea.2019.01.035
  • Tjahjanto DD, Suiker ASJ, Turteltaub S, et al. Micromechanical predictions of TRIP steel behavior as a function of microstructural parameters. Comput Mater Sci. 2007;41(1):107–116. doi: 10.1016/j.commatsci.2007.03.005
  • Zhao KM, Chang Y, Hu P, et al. Influence of rapid cooling pretreatment on microstructure and mechanical property of hot stamped AHSS part. J Mater Process Tech. 2016;228:68–75. doi: 10.1016/j.jmatprotec.2014.09.022
  • Li XD, Chang Y, Wang CY, et al. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties. Mater Sci Eng A. 2017;679:240–248. doi: 10.1016/j.msea.2016.10.045
  • Wu ZQ, Tang YB, Chen W, et al. Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map. Vacuum. 2019;159:447–455. doi: 10.1016/j.vacuum.2018.10.079
  • Liang ZY, Li YZ, Huang MX. The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel. Scr Mater. 2016;112:28–31. doi: 10.1016/j.scriptamat.2015.09.003
  • Han J, Nam JH, Lee YK. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel. Acta Mater. 2016;113:1–10. doi: 10.1016/j.actamat.2016.04.038
  • Moor ED, Matlock DK, Speer JG, et al. Austenite stabilization through manganese enrichment. Scr Mater. 2011;64(2):185–188. doi: 10.1016/j.scriptamat.2010.09.040
  • Li ZC, Ding H, Misra RDK, et al. Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: the effect of austenite-reverted transformation and quenching-tempering treatments. Mater Sci Eng A. 2017;682:211–219. doi: 10.1016/j.msea.2016.11.048
  • Xu HF, Zhao J, Cao WQ, et al. Tempering Effects on the stability of retained austenite and mechanical properties in a medium manganese steel. ISIJ Int. 2012;54:868–873. doi: 10.2355/isijinternational.52.868
  • Cao WQ, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by ART-annealing. Mater Sci Eng A. 2011;528(22–23):6661–6666. doi: 10.1016/j.msea.2011.05.039
  • Wang C, Shi J, Wang CY, et al. Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing. ISIJ Int. 2011;51(4):651–656. doi: 10.2355/isijinternational.51.651
  • Zhou NP, Song RB, Li X, et al. Dependence of austenite stability and deformation behavior on tempering time in an ultrahigh strength medium Mn TRIP steel. Mater Sci Eng A. 2018;738:153–162. doi: 10.1016/j.msea.2018.09.098
  • Li Y, Li W, Liu WQ, et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel. Acta Mater. 2018;146:126–141. doi: 10.1016/j.actamat.2017.12.035
  • Cai ZH, Ding H, Misra RDK, et al. Unique impact of ferrite in influencing austenite stability and deformation behavior in a hot-rolled Fe–Mn–Al–C steel. Mater Sci Eng A. 2014;595:86–91. doi: 10.1016/j.msea.2013.12.003
  • Dijk NHV, Butt AM, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Mater. 2005;53(20):5439–5447. doi: 10.1016/j.actamat.2005.08.017
  • J.G. Speer, A.M. Streicher, D.K. Matlock, Quenching and partitioning: a fundamentally new process to create high strength trip sheet microstructures, Symposium on austenite formation and decomposition; 2003; Chicago. pp. 252–259.
  • Challa VSA, Wan XL, Somani MC, et al. Significance of interplay between austenite stability and deformation mechanisms in governing three-stage work hardening behavior of phase- reversion induced nanograined/ultrafine-grained (NG/UFG) stainless steels with high strength-high ductility combination. Scr Mater. 2014;86:60–63. doi: 10.1016/j.scriptamat.2014.05.010
  • Misra RDK, Challa VSA, Venkatsurya PKC, et al. Interplay between grain structure, deformation mechanisms and austenite stability in phase-reversion-induced nanograined/ultrafine-grained austenitic ferrous alloy. Acta Mater. 2015;84:339–348. doi: 10.1016/j.actamat.2014.10.038
  • Zhao JL, Xi Y, Shi W, et al. Microstructure and mechanical properties of high manganese TRIP steel. J Iron Steel Res Int. 2012;19(4):57–62. doi: 10.1016/S1006-706X(12)60088-0
  • Arlazarov A, Gouné M, Bouaziz O, et al. Evolution of microstructure and mechanical properties of medium Mn steels during double annealing. Mat Sci Eng A. 2012;542:31–39. doi: 10.1016/j.msea.2012.02.024
  • Dan WJ, Li SH, Zhang WG, et al. The effect of strain-induced martensitic transformation on mechanical properties of TRIP stee. Mater Des. 2008;29:601–612. doi: 10.1016/j.matdes.2007.02.019
  • Jha BK, Avtar R, Dwivedi VS, et al. Applicability of modified Crussard-Jaoul analysis on the deformation behaviour of dual-phase steels. J Mater Sci Lett. 1987;6(8):891–893. doi: 10.1007/BF01729860
  • Cai ZH, Ding H, Misra RDK, et al. Unique serrated flow dependence of critical stress in a hot-rolled Fe–Mn–Al–C steel. Scr Mater. 2014;71:5–8. doi: 10.1016/j.scriptamat.2013.09.009
  • Cai ZH, Ding H, Misra RDK, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater. 2015;84:229–236. doi: 10.1016/j.actamat.2014.10.052
  • Bhadeshia HKDH, Edmonds DV. Bainite in silicon steels: a new composition property approach ii. Metal Sci. 1983;17(9):411–419. doi: 10.1179/030634583790420600
  • Chiang J, Lawrence B, Boyd JD, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steel. Mater Sci Eng A. 2011;528(13–14):4516–4521. doi: 10.1016/j.msea.2011.02.032
  • Cai ZH, Ding H, Xue X, et al. Microstructural evolution and mechanical properties of hot-rolled 11% manganese TRIP steel. Mater Sci Eng A. 2013;560:388–395. doi: 10.1016/j.msea.2012.09.083
  • Cai ZH, Ding H, Kamoutsi H, et al. Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation- induced plasticity steel. Mater Sci Eng A. 2016;654:359–367. doi: 10.1016/j.msea.2015.12.057
  • Cai MH, Li Z, Chao Q, et al. A novel Mo and Nb microalloyed medium Mn TRIP steel with maximal ultimate strength and moderate ductility. Metall Mater Trans A. 2014;45(12):5624–5634. doi: 10.1007/s11661-014-2504-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.