672
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced strength-ductility of medium Mn steel by quenching, partitioning and tempering

, , , &
Pages 584-597 | Received 25 Oct 2019, Accepted 16 Jan 2020, Published online: 05 Feb 2020

References

  • Lee YK, Han J. Current opinion in medium manganese steel Mater. Sci Tech. 2014;37:843–856.
  • He BB, Hu B, Yen HW, et al. High dislocation density–induced large ductility in deformed and partitioned steels. Science. 2017;357:1029–1032. doi: 10.1126/science.aan0177
  • Speer JG, Matlock DK, De-Cooman BC, et al. Carbon partitioning into austenite after martensite transformation. Acta Mater. 2003;51:2611–2622. doi: 10.1016/S1359-6454(03)00059-4
  • Zhang J, Ding H, Wang C, et al. Work hardening behaviors of a low carbon Nb-microalloyed Si-Mn quenching-partitioning steel with different cooling styles after partitioning. Mater Sci Eng A. 2013;585:132–138. doi: 10.1016/j.msea.2013.07.046
  • Hao Q, Qin S, Liu Y. Effect of retained austenite on the dynamic tensile behavior of a novel quenching-partitioning-tempering martensitic steel. Mater Sci Eng A. 2016;662:16–25. doi: 10.1016/j.msea.2016.03.007
  • Peng F, Xu YB, Gu XL, et al. The relationships of microstructure-mechanical properties in quenching and partitioning (Q&P) steel accompanied with microalloyed carbide precipitation. Mater Sci Eng A. 2018;723:247–258. doi: 10.1016/j.msea.2018.03.061
  • Zhang K, Liu P, Li W, et al. Ultrahigh strength-ductility steel treated by a novel quenching–partitioning–tempering process. Mater Sci Eng A. 2014;619:205–211. doi: 10.1016/j.msea.2014.09.100
  • Luo P, Gao GH, Zhang H, et al. On structure-property relationship in nanostructured bainitic steel subjected to the quenching and partitioning process. Mater Sci Eng A. 2016;661:1–8. doi: 10.1016/j.msea.2016.03.006
  • Wang Y, Guo ZH, Chen NL, et al. Deformation temperature dependence of mechanical properties and microstructures for a novel quenching-partitioning-tempering steel. J Mater Sci Tech. 2016;29:451–457. doi: 10.1016/j.jmst.2013.01.003
  • Seo EJ, Lawrence C, De-cooman BC. Application of quenching and partitioning processing to medium Mn steel. Metall Mater Trans A. 2014;46:27–31. doi: 10.1007/s11661-014-2657-7
  • Cai MH, Huang HS, Pan HJ, et al. Microstructure and tensile properties of a Nb–Mo microalloyed 6.5Mn alloy processed by intercritical annealing and quenching and partitioning. Acta Metall Sin (Engl Lett). 2017;30:665–674. doi: 10.1007/s40195-017-0597-0
  • Liu L, He BB, Cheng GJ, et al. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite. Scr Mater. 2018;150:1–6. doi: 10.1016/j.scriptamat.2018.02.035
  • Lin ZG, Tang D, Zheng HH, et al. Effects of annealing temperature on microstructure and properties of medium-manganese Q&P steel. Tran Mater Heat Treat. 2015;36:42–47.
  • De-Cooman BC, Lee SJ, Shin S, et al. Combined intercritical annealing and Q&P processing of medium Mn steel. Metall Mater Trans A. 2017;48:39–45. doi: 10.1007/s11661-016-3821-z
  • Li Y, Li W, Min N, et al. Effects of hot/cold deformation on the microstructures and mechanical properties of ultra-low carbon medium manganese quenching-partitioning-tempering steels. Acta Mater. 2017;139:96–108. doi: 10.1016/j.actamat.2017.08.003
  • Gao GH, Zhang H, Gui XL, et al. Tempering behavior of ductile 1700MPa MneSieCreC steel treated by quenching and partitioning process incorporating bainite formation. J Mater Sci Tech. 2015;31:199–204. doi: 10.1016/j.jmst.2014.07.010
  • Dijk NHV, Butt AM, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Mater. 2005;53:5439–5447. doi: 10.1016/j.actamat.2005.08.017
  • Ungár T, Ott S, Sanders P, et al. Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis. Acta Mater. 1998;46:3693–3699. doi: 10.1016/S1359-6454(98)00001-9
  • HajyAkbary F, Sietsma J, Böttger AJ, et al. An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures. Mater Sci Eng A. 2015;639:208–218. doi: 10.1016/j.msea.2015.05.003
  • Li L, Wollants P, He YL, et al. Review and prospect of high strength low alloy TRIP steel. Acta Metall Sin (Engl Lett). 2003;16:457–465.
  • Abbasi E, Rainforth WM. Microstructural evolution of Nb–V–Mo and V containing TRIP-assisted steels during thermomechanical processing. J Mater Sci Tech. 2017;33:311–320. doi: 10.1016/j.jmst.2016.08.019
  • Urrutia IG, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Mater. 2012;60:5791–5802. doi: 10.1016/j.actamat.2012.07.018
  • Shi J, Sun X, Wang M, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scr Mater. 2010;63:815–818. doi: 10.1016/j.scriptamat.2010.06.023
  • Seo EJ, Tokuda H, Adachi Y, et al. Kinetics of the partitioning of carbon and substitutional alloying elements during quenching and partitioning (Q&P) processing of medium Mn steel. Acta Mater. 2016;1079:354–365. doi: 10.1016/j.actamat.2016.01.059
  • Huyan F, Yan JY, Hoglund L, et al. Simulation of the growth of austenite from as-quenched martensite in medium Mn steels. Metall Mater Trans A. 2018;49:1053–1060. doi: 10.1007/s11661-018-4497-3
  • Qiao X, Han LZ, Zhang WM. Thermal stability of retained austenite in high-carbon steels during cryogenic and tempering treatments. ISIJ Int. 2016;56:140–147. doi: 10.2355/isijinternational.ISIJINT-2015-248
  • Zhao XL, Zhang YJ, Shao CW, et al. Thermal stability of retained austenite and mechanical properties of medium-Mn steel during tempering treatment. J Iron Steel Res Int. 2017;24:830–837. doi: 10.1016/S1006-706X(17)30123-1
  • Gao GH, Zhang H, Tan ZL, et al. A carbide-free bainite/martensite/austenite triplex steel with enhanced mechanical properties treated by a novel quenching–partitioning–tempering process. Mater Sci Eng A. 2013;559:165–169. doi: 10.1016/j.msea.2012.08.064
  • Meyer MD, Mahieu J, De-Cooman BC. Empirical microstructure prediction method for combined intercritical annealing and bainitic transformation of TRIP steel, Mater. Sci Tech. 2016;18:1121–1132.
  • Park HS, Seol JB, Lim NS, et al. Study of the decomposition behavior of retained austenite and the partitioning of alloying elements during tempering in CMnSiAl TRIP steels. Mater Des. 2015;82:173–180. doi: 10.1016/j.matdes.2015.05.059
  • Podder AS, Badeshia HKDH. Thermal stability of austenite retained in bainitic steels. Mater Sci Eng A. 2010;527:2121–2128. doi: 10.1016/j.msea.2009.11.063
  • Capdevila C, Caballero FG, Andres CGD. Determination of Ms temperature in steels: a Bayesian neural network model. ISIJ Int. 2002;42:894–902. doi: 10.2355/isijinternational.42.894
  • Cai ZH, Ding H, Xue X, et al. Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength–high ductility combination transformation-induced plasticity steel. Scr Mater. 2013;68:865–868. doi: 10.1016/j.scriptamat.2013.02.010
  • Jimenez-Melero E, Dijk NV, Zhao L, et al. Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels. Acta Mater. 2007;2007:6713–6723. doi: 10.1016/j.actamat.2007.08.040
  • Pan HJ, Cai MH, Ding H, et al. Ultrahigh strength-ductile medium-Mn steel auto-parts combining warm stamping and quenching & partitioning. Mater Sci Tech. 2019;35:807–814. doi: 10.1080/02670836.2019.1591029
  • Eliasson J, Sandstrom R. Proof strength values for austenitic stainless steels at elevated temperatures. Steel Res. 2000;71:249–254. doi: 10.1002/srin.200001224
  • Tsuchiyama T, Uchida H, Kataoka K, et al. Fabrication of fine-grained high nitrogen austenitic steels through mechanical alloying treatment. ISIJ Int. 2002;42:1438–1443. doi: 10.2355/isijinternational.42.1438
  • Bailey JE, Hirsch PB. The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos Mag. 1960;5:485–497. doi: 10.1080/14786436008238300
  • Seo EJ, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel. Acta Mater. 2016;113:124–139. doi: 10.1016/j.actamat.2016.04.048
  • Madec R, Devincre B, Kubin LP. From dislocation junctions to forest hardening. Phys Rev Lett. 2002;89:255508. doi: 10.1103/PhysRevLett.89.255508
  • Rodriguez R, Gutierrez I. Unified formulation to predict the tensile curves of steels with different microstructures. Mater Sci Forum. 2003;426:4525–4530. doi: 10.4028/www.scientific.net/MSF.426-432.4525
  • Zurnadzhya VI, Efremenkoa VG, Wub KM, et al. Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel. Mater Sci Eng A. 2019;745:307–318. doi: 10.1016/j.msea.2018.12.106
  • He BB, Huang BM, He SH, et al. Increasing yield strength of medium Mn steel by engineering multiple strengthening defects. Mater Sci Eng A. 2018;724:11–16. doi: 10.1016/j.msea.2018.03.065
  • Cai MH, Zhu WJ, Stanford N, et al. Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy. Mater Sci Eng A. 2016;653:35–42. doi: 10.1016/j.msea.2015.11.103
  • Cai MH, Huang HS, Su JH, et al. Enhanced tensile properties of a reversion annealed 6.5Mn-TRIP alloy via tailoring initial microstructure and cold rolling reduction. J Mater Sci Tech. 2018;34:1428–1435. doi: 10.1016/j.jmst.2017.12.008
  • Suh DW, Kim SJ. Medium Mn transformation-induced plasticity steels: recent progress and challenges. Scr Mater. 2017;126:63–67. doi: 10.1016/j.scriptamat.2016.07.013
  • Hu B, Luo HW, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review. J Mater Sci Tech. 2017;33:1457–1464. doi: 10.1016/j.jmst.2017.06.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.