144
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Development of high strength suction cast hypereutectic Al–20Si alloy containing gamma alumina and strontium

ORCID Icon, &
Pages 623-630 | Received 07 Oct 2019, Accepted 27 Jan 2020, Published online: 12 Feb 2020

References

  • Hao Y, Gao B, Tu GF, et al. Surface modification of Al-20Si alloy by high current pulsed electron beam. Appl Surf Sci. 2011;257:3913–3919. doi: 10.1016/j.apsusc.2010.11.118
  • Gupta M, Ling S. Microstructure and mechanical properties of hypo/hyper-eutectic Al–Si alloys synthesized using a near-net shape forming technique. J Alloys Compd. 1999;287:284–294. doi: 10.1016/S0925-8388(99)00062-6
  • Mandal A, Acharya M. Effect of strontium and Misch metal on Al–14Si–3Mg alloy. Trans Indian Inst Met. 2015;68:1181–1185. doi: 10.1007/s12666-015-0673-y
  • Shi WX, Gao B, Tu GF, et al. Effect of Nd on microstructure and wear resistance of hypereutectic Al–20%Si alloy. J Alloys Compd. 2010;508:480–485. doi: 10.1016/j.jallcom.2010.08.098
  • Li Q, Xia T, Lan Y, et al. Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al–20%Si alloy. J Alloys Compd. 2013;562:25–32. doi: 10.1016/j.jallcom.2013.02.016
  • Li Q, Xia T, Lan Y, et al. Effect of in situ γ-Al2O3 particles on the microstructure of hypereutectic Al–20%Si alloy. J Alloys Compd. 2013;577:232–236. doi: 10.1016/j.jallcom.2013.04.043
  • Li Q, Xia T, Lan Y, et al. Effects of rare earth Er addition on microstructure and mechanical properties of hypereutectic Al–20% Si alloy. Mater Sci Eng A. 2013;588:97–102. doi: 10.1016/j.msea.2013.09.017
  • Feng HK, Yu SR, Li YL, et al. Effect of ultrasonic treatment on microstructures of hypereutectic Al–Si alloy. J Mater Process Technol. 2008;208:330–335. doi: 10.1016/j.jmatprotec.2007.12.121
  • Vijeesh V, Prabhu KN. Review of microstructure evolution in hypereutectic Al–Si alloys and its effect on wear properties. Trans Indian Inst Met. 2014;67:1–18. doi: 10.1007/s12666-014-0379-6
  • Sun J, Zhang L, Wu G, et al. Refinement of primary Si in Al – 20% Si alloy by MRB through phosphorus additions. J Mater Process Technol. 2015;225:485–491. doi: 10.1016/j.jmatprotec.2015.06.031
  • Li B, Wang H, Jie J, et al. Effects of yttrium and heat treatment on the microstructure and tensile properties of Al–7.5Si–0.5Mg alloy. Mater Des. 2011;32:1617–1622. doi: 10.1016/j.matdes.2010.08.040
  • Jeon JH, Shin JH, Bae DH. Si phase modification on the elevated temperature mechanical properties of Al–Si hypereutectic alloys. Mater Sci Eng A. 2019;748:367–370. doi: 10.1016/j.msea.2019.01.119
  • Chokemorh P, Pandee P, Limmaneevichitr C. Role of scandium additions in primary silicon refinement of hypereutectic Al–20Si alloys. Int J Cast Met Res. 2018;0461:1–10. doi: 10.1080/13640461.2018.1436214
  • Zhong-Wei C, Wan-Qi J, Rui-Jie Z. Superheat treatment of Al–7Si–0.55Mg alloy melt. Mater Lett. 2005;59:2183–2185. doi: 10.1016/j.matlet.2004.08.047
  • Ward PJ, Atkinson HV, Anderson PRG, et al. Semi-solid processing of novel MMCs based on hypereutectic aluminium-silicon alloys. Acta Mater. 1996;44:1717–1727. doi: 10.1016/1359-6454(95)00356-8
  • Jung HK, Seo PK, Kang CG. Microstructural characteristics and mechanical properties of hypo-eutectic and hyper-eutectic Al–Si alloys in the semi-solid forming process. J Mater Process Technol. 2001;113:568–573. doi: 10.1016/S0924-0136(01)00708-7
  • Lu D, Jiang Y, Guan G, et al. Refinement of primary Si in hypereutectic Al–Si alloy by electromagnetic stirring. J Mater Process Technol. 2007;189:13–18. doi: 10.1016/j.jmatprotec.2006.12.008
  • Ge LL, Liu RP, Li G, et al. Solidification of Al–50 at.%Si alloy in a drop tube. Mater Sci Eng A. 2004;385:128–132. doi: 10.1016/S0921-5093(04)00865-2
  • Pierantoni M, Gremaud M, Magnin P, et al. The coupled zone of rapidly solidified AlSi alloys in laser treatment. Acta Metall Mater. 1992;40:1637–1644. doi: 10.1016/0956-7151(92)90106-O
  • Uzun O, Karaaslan T, Gogebakan M, et al. Hardness and microstructural characteristics of rapidly solidified Al–8–16 wt.%Si alloys. J Alloys Compd. 2004;376:149–157. doi: 10.1016/j.jallcom.2004.01.017
  • Cai Z, Wang R, Zhang C, et al. Characterization of rapidly solidified Al–27 Si hypereutectic alloy: effect of solidification condition. J Mater Eng Perform. 2015;24:1226–1236. doi: 10.1007/s11665-015-1386-4
  • Liao H, Sun Y, Sun G. Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al–11.6% Si alloys modified with strontium. Mater Sci Eng A. 2002;335:62–66. doi: 10.1016/S0921-5093(01)01949-9
  • Dahle AK, Nogita K, McDonald SD, et al. Eutectic modification and microstructure development in Al–Si alloys. Mater Sci Eng A. 2005;413–414:243–248. doi: 10.1016/j.msea.2005.09.055
  • Lu SZ, Hellawell A. The mechanism of silicon modification in aluminum-silicon alloys: impurity induced twinning. Metall Trans A. 1987;18:1721–1733. doi: 10.1007/BF02646204
  • Jenkinson DC, Hogan LM. The modification of aluminium-silicon alloys with strontium. J Cryst Growth. 1975;28:171–187. doi: 10.1016/0022-0248(75)90233-X
  • Henghua Z, Haili D, Guangjie S, et al. Microstructure and mechanical properties of hypereutectic A1–Si alloy modified with Cu–P. Rare Met. 2008;27:59–63. doi: 10.1016/S1001-0521(08)60031-5
  • Jung JG, Ahn TY, Cho YH, et al. Synergistic effect of ultrasonic melt treatment and fast cooling on the refinement of primary Si in a hypereutectic Al–Si alloy. Acta Mater. 2018;144:31–40. doi: 10.1016/j.actamat.2017.10.039
  • Dai H, Liu X. Effects of individual and combined additions of phosphorus, boron and cerium on primary and eutectic silicon in an Al–30Si alloy. Rare Met. 2009;28:651–655. doi: 10.1007/s12598-009-0124-1
  • Kyffin WJ, Rainforth WM, Jones H. Effect of treatment variables on size refinement by phosphide inoculants of primary silicon in hypereutectic Al–Si alloys. Mater Sci Technol. 2001;17:901–905. doi: 10.1179/026708301101510870
  • Faraji M, Khalilpour H, Faraji M, et al. Effect of phosphorous inoculation on creep behavior of a hypereutectic Al–Si alloy. J Mater Eng Perform. 2014;23:3467–3473. doi: 10.1007/s11665-014-1152-z
  • Raghukiran N, Kumar R. A effect of scandium addition on the microstructure, mechanical and wear properties of the spray formed hypereutectic aluminum–silicon alloys. Mater Sci Eng A. 2015;641:138–147. doi: 10.1016/j.msea.2015.06.027
  • Shi W, Gao B, Tu G, et al. Effect of neodymium on primary silicon and mechanical properties of hypereutectic Al–15Si alloy. J Rare Earths. 2010;28:367–370. doi: 10.1016/S1002-0721(10)60363-8
  • Li Q, Li B, Li J, et al. Effect of yttrium addition on the microstructures and mechanical properties of hypereutectic Al–20Si alloy. Mater Sci Eng A. 2018;722:47–57. doi: 10.1016/j.msea.2018.03.015
  • Li Q, Li J, Li B, et al. Effect of samarium (Sm) addition on the microstructure and tensile properties of Al–20%Si casting alloy. Int J Met. 2018;12:554–564.
  • Choi H, Konishi H, Li X. Al2O3 nanoparticles induced simultaneous refinement and modification of primary and eutectic Si particles in hypereutectic Al–20Si alloy. Mater Sci Eng A. 2012;541:159–165. doi: 10.1016/j.msea.2012.01.131
  • Acharya M, Mandal A. An investigation on individual and synergistic effect of gamma alumina (γ-Al2O3) and strontium on microstructure and mechanical properties of Al–20Si alloy. Trans Nonferrous Met Soc China. 2019;29:1353–1364. doi: 10.1016/S1003-6326(19)65042-9
  • Kirkwood DH. A simple model for dendrite arm coarsening during solidification. Mater Sci Eng. 1985;73:7–10. doi: 10.1016/0025-5416(85)90319-2
  • Kurz W, Fisher DJ. Fundamentals of solidification. 3rd ed. Aedermannsdorf, Switzerland: Trans Tech Publications Ltd.; 1989. p. 85–86.
  • Easton M, Davidson C, John DST. Effect of alloy composition on the dendrite arm spacing of multicomponent aluminum alloys. Metall Mater Trans A. 2010;41:1528–1538. doi: 10.1007/s11661-010-0183-9
  • Rajabi M, Vahidi M, Simchi A, et al. Microstructural evolution of Al–20Si–5Fe alloy during rapid solidification and hot consolidation. Rare Met. 2009;28:639–645. doi: 10.1007/s12598-009-0122-3
  • Pawlik P, Pawlik K, Przybł A. Investigation of the cooling rate in the suction casting process. Rev Adv Mater Sci. 2008;18:81–84.
  • Hong SJ, Suryanarayana C. Mechanical properties and fracture behavior of an ultrafine-grained Al–20 wt pct Si alloy. Metall Mater Trans A. 2005;36:715–723. doi: 10.1007/s11661-005-1003-5
  • Jiang QC, Xu CL, Lu M, et al. Effect of new Al–P–Ti–TiC–Y modifier on primary silicon in hypereutectic Al–Si alloys. Mater Lett. 2005;59:624–628. doi: 10.1016/j.matlet.2004.10.042
  • Kaya H, Gündüz M, Çadirli E, et al. Dependency of microindentation hardness on solidification processing parameters and cellular spacing in the directionally solidified Al based alloys. J Alloys Compd. 2009;478:281–286. doi: 10.1016/j.jallcom.2008.11.164
  • Jiang W, Xu X, Zhao Y, et al. Effect of the addition of Sr modifier in different conditions on microstructure and mechanical properties of T6 treated Al–Mg2Si in-situ composite. Mater Sci Eng A. 2018;721:263–273. doi: 10.1016/j.msea.2018.02.100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.