513
Views
14
CrossRef citations to date
0
Altmetric
Review

Recent progress in porous TiNb-based alloys for biomedical implant applications

ORCID Icon &
Pages 385-392 | Received 24 Dec 2019, Accepted 28 Jan 2020, Published online: 10 Feb 2020

References

  • Kunčická L, Kocich R, Lowe TC. Advances in metals and alloys for joint replacement. Prog Mater Sci. 2017;88:232–280. doi: 10.1016/j.pmatsci.2017.04.002
  • Sidambe AT. Biocompatibility of advanced manufactured titanium implants—a review. Materials (Basel). 2014;7:8168–8188. doi: 10.3390/ma7128168
  • Geetha M, Singh AK, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog Mater Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004
  • Hon YH, Wang JY, Pan YN. Composition/phase structure and properties of titanium-niobium alloys. Mater Trans. 2003;44:2384–2390. doi: 10.2320/matertrans.44.2384
  • Matsuno H, Yokoyama A, Watari F, et al. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials. 2001;22:1253–1262. doi: 10.1016/S0142-9612(00)00275-1
  • McMahon RE, Ma J, Verkhoturov SV, et al. A comparative study of the cytotoxicity and corrosion resistance of nickel–titanium and titanium–niobium shape memory alloys. Acta Biomater. 2012;8:2863–2870. doi: 10.1016/j.actbio.2012.03.034
  • Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng A. 1996;213:134–137. doi: 10.1016/0921-5093(96)10243-4
  • Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998;13:94–117. doi: 10.1557/JMR.1998.0015
  • Bai Y, Deng Y, Zheng Y, et al. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young’s modulus. Mater Sci Eng C. 2016;59:565–576. doi: 10.1016/j.msec.2015.10.062
  • Okulov IV, Volegov AS, Attar H, et al. Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications. J Mech Behav Biomed Mater. 2017;65:866–871. doi: 10.1016/j.jmbbm.2016.10.013
  • Guo Y, Georgarakis K, Yokoyama Y, et al. On the mechanical properties of TiNb based alloys. J Alloys Compd. 2013;571:25–30. doi: 10.1016/j.jallcom.2013.03.192
  • Fischer M, Laheurte P, Acquier P, et al. Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications. Mater Sci Eng C. 2017;75:341–348. doi: 10.1016/j.msec.2017.02.060
  • Bönisch M, Waitz T, Calin M, et al. Tailoring the Bain strain of martensitic transformations in TiNb alloys by controlling the Nb content. Int J Plasticity. 2016;85:190–202. doi: 10.1016/j.ijplas.2016.07.010
  • Bahador A, Hamzah E, Kondoh K, et al. Effect of deformation on the microstructure, transformation temperature and superelasticity of Ti–23 at% Nb shape-memory alloys. Mater Design. 2017;118:152–162. doi: 10.1016/j.matdes.2016.12.048
  • Xiong J, Li Y, Hodgson PD, et al. Nanohydroxyapatite coating on a titanium–niobium alloy by a hydrothermal process. Acta Biomater. 2010;6:1584–1590. doi: 10.1016/j.actbio.2009.10.016
  • Saud SN, Hosseinian RS, Bakhsheshi-Rad HR, et al. Corrosion and bioactivity performance of graphene oxide coating on TiNb shape memory alloys in simulated body fluid. Mater Sci Eng C. 2016;68:687–694. doi: 10.1016/j.msec.2016.06.048
  • Zhao D, Chang K, Ebel T, et al. Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial. J Alloys Compd. 2015;640:393–400. doi: 10.1016/j.jallcom.2015.04.039
  • Lee CM, Ju CP, Lin JHC. Structure–property relationship of cast Ti–Nb alloys. J Oral Rehabil. 2002;29:314–322. doi: 10.1046/j.1365-2842.2002.00825.x
  • Sun B, Meng XL, Gao ZY, et al. Martensite structure and mechanical property of Ti-Nb-Ag shape memory alloys for biomedical applications. Vacuum. 2018;156:181–186. doi: 10.1016/j.vacuum.2018.07.029
  • Azevedo TF, Lima TN, Blas JG, et al. The mechanical behavior of TiNbSn alloys according to alloying contents, cold rolling and aging. J Mech Behav Biomed Mater. 2017;75:33–40. doi: 10.1016/j.jmbbm.2017.07.002
  • Fu T, Liu B, Dong B, et al. Hydrothermal surface modification of a Low modulus Ti-Nb based alloy. Rare Metal Mater Eng. 2014;43:291–295. doi: 10.1016/S1875-5372(14)60061-8
  • Moraes PEL, Contieri RJ, Lopes ESN, et al. Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys. Mater Charact. 2014;96:273–281. doi: 10.1016/j.matchar.2014.08.014
  • Godley R, Starosvetsky D, Gotman I. Corrosion behavior of a low modulus β-Ti-45%Nb alloy for use in medical implants. J Mater Sci: Mater Med. 2006;17:63–67.
  • Yuan B, Yang B, Gao Y, et al. Achieving ultra-high superelasticity and cyclic stability of biomedical Ti–11Nb–4O (at.%) alloys by controlling Nb and oxygen content. Mater Design. 2016;92:978–982. doi: 10.1016/j.matdes.2015.12.148
  • Li YH, Chen RB, Qi GX, et al. Powder sintering of porous Ti–15Mo alloy from TiH2 and Mo powders. J Alloys Compd. 2009;485:215–218. doi: 10.1016/j.jallcom.2009.06.003
  • Oliveira CSS, Griza S, Oliveira MV, et al. Study of the porous Ti35Nb alloy processing parameters for implant applications. Powder Technol. 2015;281:91–98. doi: 10.1016/j.powtec.2015.03.014
  • Wang X, Li Y, Xiong J, et al. Porous TiNbZr alloy scaffolds for biomedical applications. Acta Biomater. 2009;5:3616–3624. doi: 10.1016/j.actbio.2009.06.002
  • Li YH, Chen N, Zhang HL. Powder sintering and characterization of biomedical porous TiNb alloy. Dig J Nanomater Bios. 2018;13:491–498.
  • Xiong J, Li Y, Yamada Y, et al. Processing and mechanical properties of porous titanium-niobium shape memory alloy for biomedical applications. Mater Sci Forum. 2007;561-565:1689–1692. doi: 10.4028/www.scientific.net/MSF.561-565.1689
  • Zhuravleva K, Müller R, Schultz L, et al. Determination of the Young’s modulus of porous ß-type Ti–40Nb by finite element analysis. Mater Design. 2014;64:1–8. doi: 10.1016/j.matdes.2014.07.027
  • Maya AEA, Grana DR, Hazarabedian A, et al. Zr–Ti–Nb porous alloys for biomedical application. Mater Sci Eng C. 2012;32:321–329. doi: 10.1016/j.msec.2011.10.035
  • Rao X, Chu CL, Zheng YY. Phase composition, microstructure, and mechanical properties of porous Ti–Nb–Zr alloys prepared by a two-step foaming powder metallurgy method. J Mech Behav Biomed Mater. 2014;34:27–36. doi: 10.1016/j.jmbbm.2014.02.001
  • Zhuravleva K, Chivu A, Teresiak A, et al. Porous low modulus Ti40Nb compacts with electrodeposited hydroxyapatite coating for biomedical applications. Mater Sci Eng C. 2013;33:2280–2287. doi: 10.1016/j.msec.2013.01.049
  • Wan X. Effects of alkali and heat treatment on strength of porous Ti35Nb. Trans Nonferrous Met Soc China. 2011;21:1335–1339. doi: 10.1016/S1003-6326(11)60862-5
  • Brailovski V, Prokoshkin S, Gauthier M, et al. Mechanical properties of porous metastable beta Ti–Nb–Zr alloys for biomedical applications. J Alloys Compd. 2013;577:s413–s417. doi: 10.1016/j.jallcom.2011.12.157
  • Xu J, Weng X, Wang X, et al. Potential Use of porous titanium–niobium alloy in orthopedic implants: preparation and experimental Study of Its biocompatibility In vitro. Plos One. 2013;8:e79289. doi: 10.1371/journal.pone.0079289
  • Liu J, Ruan J, Chang L, et al. Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: fabrication, mechanical properties and in vitro/vivo biocompatibility. Mater Sci Eng C. 2017;78:503–512. doi: 10.1016/j.msec.2017.04.088
  • Yang D, Guo Z, Shao H, et al. Mechanical properties of porous Ti-Mo and Ti-Nb alloys for biomedical application by gelcasting. Procedia Eng. 2012;36:160–167. doi: 10.1016/j.proeng.2012.03.025
  • Zhuravleva K, Bönisch M, Prashanth KG, et al. Production of porous β-type Ti–40Nb alloy for biomedical applications: comparison of selective laser melting and Hot Pressing. Materials (Basel). 2013;6:5700–5712. doi: 10.3390/ma6125700
  • Okulov IV, Okulov AV, Volegov AS, et al. Tuning microstructure and mechanical properties of open porous TiNb and TiFe alloys by optimization of dealloying parameters. Scripta Mater. 2018;154:68–72. doi: 10.1016/j.scriptamat.2018.05.029
  • Vishnu DSM, Sure J, Liu Y, et al. Electrochemical synthesis of porous Ti-Nb alloys for biomedical applications. Mater Sci Eng C. 2019;96:466–478. doi: 10.1016/j.msec.2018.11.025
  • de Andrade DP, de Vasconcellos LMR, Carvalho ICS, et al. Titanium–35niobium alloy as a potential material for biomedical implants: In vitro study. Mater Sci Eng C. 2015;56:538–544. doi: 10.1016/j.msec.2015.07.026
  • Fojt J, Joska L, Malek J. Corrosion behaviour of porous Ti–39Nb alloy for biomedical applications. Corro Sci. 2013;71:78–83. doi: 10.1016/j.corsci.2013.03.007
  • Zhao CY, Zhu XD, Yuan T, et al. Fabrication of biomimetic apatite coating on porous titanium and their osteointegration in femurs of dogs. Mater Sci Eng C. 2010;30:98–104. doi: 10.1016/j.msec.2009.09.004
  • Kokubo T, Miyaji F, Kim HM, et al. Spontaneous formation of bone-like apatite layer on chemically treated titanium metal. J Am Ceram Soc. 1996;79:1127–1129. doi: 10.1111/j.1151-2916.1996.tb08561.x
  • Harun WSW, Asri RIM, Alias J, et al. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceram Int. 2018;44:1250–1268. doi: 10.1016/j.ceramint.2017.10.162
  • Šupová M. Substituted hydroxyapatites for biomedical applications: A review. Ceram Int. 2015;41:9203–9231. doi: 10.1016/j.ceramint.2015.03.316
  • Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci. 2017;249:321–330. doi: 10.1016/j.cis.2017.04.007
  • Gao A, Hang R, Bai L, et al. Electrochemical surface engineering of titanium-based alloys for biomedical application. Electrochim Acta. 2018;271:699–718. doi: 10.1016/j.electacta.2018.03.180
  • Gibson LG, Ashby MF. Cellular solids: structure and properties. Cambridge: Cambridge University Press; 1997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.