492
Views
17
CrossRef citations to date
0
Altmetric
Research Articles

Phases, microstructures and properties of multi-component FeCoNi-based alloys

ORCID Icon, , , , &
Pages 654-660 | Received 20 Sep 2019, Accepted 01 Feb 2020, Published online: 17 Feb 2020

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principle elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(8):299–303. doi: 10.1002/adem.200300567
  • Wang Z, Huang Y, Wang J, et al. Design of high entropy alloys based on the experience from commercial superalloys. Philos Mag Lett. 2015;95:1–6. doi: 10.1080/09500839.2014.987841
  • Miacle S., Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081
  • Anand G, Goodall R, Freeman CL. Role of configurational entropy in body-centered cubic or face-centered cubic phase formation in high entropy alloys. Scr Mater. 2016;124:90–94. doi: 10.1016/j.scriptamat.2016.07.001
  • Zhang Y, Chen Z, Cao DD, et al. Concurrence of spinodal decomposition and nano-phase precipitation in a multi-component AlCoCrCuFeNi high-entropy alloy. J Mater Res Technol. 2019;8(1):726–736. doi: 10.1016/j.jmrt.2018.04.020
  • Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloy: eutectic high-entropy alloys. Sci Rep. 2015;4:6200. doi: 10.1038/srep06200
  • Liu N, Chen C, Chang ITH, et al. Compositional dependence of phase Selection in CoCrCu0.1FeMoNi-based high-entropy alloys. Materials (Basel). 2018;11:1290. doi: 10.3390/ma11081290
  • Tian LH, Xiong W, Liu C, et al. Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high entropy alloy coating. J Mater Eng Perform. 2016;25(12):5513–5521. doi: 10.1007/s11665-016-2396-6
  • Tian LH, Fu M, Xiong W. Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance. Materials (Basel). 2018;11:320. doi: 10.3390/ma11020320
  • Qiao YX, Xu DK, Wang S, et al. Corrosion and tensile behaviors of Ti-4Al-2V-1Mo-1Fe and Ti-6Al-4V titanium alloys. Metals (Basel). 2019;9(11):1213. doi:10.3390/met9111213.
  • Qiao YX, Chen J, Zhou HL, et al. Effect of solution treatment on cavitation erosion behavior of high-nitrogen austenitic stainless steel. Wear. 2019;424–425:70–77. doi: 10.1016/j.wear.2019.01.098
  • He F, Wang ZJ, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNbx. J Alloy Compd. 2016;656:284–289. doi: 10.1016/j.jallcom.2015.09.153
  • Wu PH, Liu N, Yang W, et al. Microstructure and solidification behavior of multi- component CoCrCuxFeMoNi high-entropy alloys. Mater Sci Eng A. 2015;642:142–149. doi: 10.1016/j.msea.2015.06.061
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi: 10.1126/science.1254581
  • Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics. 2014;46:131–140. doi: 10.1016/j.intermet.2013.10.024
  • Wu Z, Bei H, Pharr GM, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014;81:428–441. doi: 10.1016/j.actamat.2014.08.026
  • Wu Z, Bei H. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy. Mater Sci Eng A. 2015;640:217–224. doi: 10.1016/j.msea.2015.05.097
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534:227–230. doi: 10.1038/nature17981
  • Yang T, Xia S, Liu S, et al. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation. Sci Rep. 2016;6:32146. doi: 10.1038/srep32146
  • Wang WR, Wang WL, Wang SC, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics. 2012;26:44–51. doi: 10.1016/j.intermet.2012.03.005
  • Liu YY, Chen Z, Chen YZ, et al. The effect of Al content on microstructures and comprehensive properties in AlxCoCrCuFeNi high entropy alloys. Vacuum. 2019;161:143–149. doi: 10.1016/j.vacuum.2018.12.009
  • Kao YF, Chen TJ, Chen SK, et al. Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J Alloys Compd. 2009;488:57–64. doi: 10.1016/j.jallcom.2009.08.090
  • Shun TT, Du YC. Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J Alloys Compd. 2009;479:157–160. doi: 10.1016/j.jallcom.2008.12.088
  • Wang YP, Li BS, Ren MX, et al. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater Sci Eng. 2008;491:154–158. doi: 10.1016/j.msea.2008.01.064
  • Wang WR, Wang WL, Yeh JW. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Compd. 2014;589:143–152. doi: 10.1016/j.jallcom.2013.11.084
  • Ma SG, Liaw PK, Gao MC, et al. Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer. J Alloys Compd. 2014;604:331–339. doi: 10.1016/j.jallcom.2014.03.050
  • Lim KR, Lee KS, Lee JS, et al. Dual-phase high-entropy alloys for high-temperature structural applications. J Alloys Compd. 2017;728:1235–1238. doi: 10.1016/j.jallcom.2017.09.089
  • Dong Y, Gao X, Lu Y, et al. A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties. Mater Lett. 2016;169:62–64. doi: 10.1016/j.matlet.2016.01.096
  • Kai W, Li CC, Cheng FP, et al. Air-oxidation of FeCoNiCr-based quinary high-entropy alloys at 700–900°C. Corros. Sci. 2017;121(170):116–125. doi: 10.1016/j.corsci.2017.02.008
  • Bulter TM, Weaver ML. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J Alloy Compd. 2016;674:229–244. doi: 10.1016/j.jallcom.2016.02.257
  • Chen C, Liu N, Zhang J, et al. Microstructure stability and oxidation behaviour of (FeCoNiMo)90 (Al/Cr)10 high-entropy alloys. Mater Sci Technol. 2019;35:1883–1890. doi: 10.1080/02670836.2019.1652785
  • Zhang Y, Zhou YJ, Lin JP, et al. Solid-solution phase formation rules for multicomponent alloys. Adv Eng Mater. 2008;10(6):534–538. doi: 10.1002/adem.200700240
  • Guo S, Liu CT. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Progr Nat Sci Mater Int. 2011;21:433–446. doi: 10.1016/S1002-0071(12)60080-X
  • Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2012;132:233–238. doi: 10.1016/j.matchemphys.2011.11.021
  • Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of FCC or bcc phase in high entropy alloys. J Appl Phys. 2011;109(10):103505–1033510. doi: 10.1063/1.3587228
  • Barin I. Thermochemical data for pure substances. 3rd ed. Weinheim, Germany: American Chemical Society and American Institute of Physics for National Bureau of Standards; 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.