641
Views
0
CrossRef citations to date
0
Altmetric
Review

Secondary electron hyperspectral imaging: nanostructure and chemical analysis for the LV-SEM

Pages 527-539 | Received 06 Dec 2019, Accepted 17 Feb 2020, Published online: 09 Mar 2020

References

  • Goldstein JI, Newbury DE, Michael JR, et al. Scanning electron microscopy and X-ray microanalysis. 4th ed. New York (NY): Springer; 2018. p. 550.
  • Müllerová I, Konvalina I. Collection of secondary electrons in scanning electron microscopes. J Microsc. 12 2009;236(3):203–210.
  • Zhu Y, Inada H, Nakamura K, et al. Imaging single atoms using secondary electrons with an aberration-corrected electron microscope. Nat Mater. 2009;8(10):808–812.
  • Griffin BJ. A comparison of conventional Everhart-Thornley style and in-lens secondary electron detectors-a further variable in scanning electron microscopy. Scanning. 5 2011;33(3):162–173.
  • Asahina S, Togashi T, Terasaki O, et al. High-resolution low-voltage scanning electron microscope study of nanostructured materials. Microsc Anal. 2012;26(7):12–14.
  • Masters RC, Pearson AJ, Glen TS, et al. Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy. Nat Commun. 4 2015;6(22).
  • Joy DC, Joy CS. Low voltage scanning electron microscopy. Micron. 6 1996;27(3–4):247–263.
  • Joy DC. Scanning electron microscopy: second best no more. Nat Mater. 2009;8(10):776–777.
  • Egerton RF, Li P, Malac M. Radiation damage in the TEM and SEM. Micron. 2004.
  • Stehling N, Masters R, Zhou Y, et al. New perspectives on nano-engineering by secondary electron spectroscopy in the helium ion and scanning electron microscope. MRS Commun. 23 6 2018;8(02):226–240.
  • Joy DC, Khanna N, Braski D. Secondary electron spectroscopy for microanalysis and defect review. Metrol, Insp, Process Control Microlithogr XIII. 1999.
  • Salim M, Hurst J, Montgomery M, et al. Airborne contamination of graphite as analyzed by ultra-violet photoelectron spectroscopy. J Electron Spectros Relat Phenomena. 1 8 2019;235:8–15.
  • Masters RC, Stehling N, Abrams KJ, et al. Mapping polymer molecular order in the SEM with secondary electron hyperspectral imaging. Adv Sci. 6 3 2019;6(5).
  • Lorusso GF, Ohashi T, Yamaguchi A, et al. “Enabling CD SEM metrology for 5 nm technology node and beyond,” in Metrology, inspection, and process control for microlithography XXXI. San Jose (CA); 2017.
  • S. Labbé, T. Faouzi, J. Belissard and J. Hazart, Limits of model-based CD-SEM metrology. 34th European Mask and Lithography Conference. Grenoble; 2018.
  • Cunningham K. Inline SEM electron beam review accelerates LTPS display yield ramps. Nanochip Fab Solutions. 2016;11(1):32–35.
  • Schönjahn C, Humphreys CJ, Glick M. Energy-filtered imaging in a field-emission scanning electron microscope for dopant mapping in semiconductors. J Appl Phys. 2002;92(12):7667–7671.
  • Schönjahn C, Broom RF, Humphreys CJ, et al. Optimizing and quantifying dopant mapping using a scanning electron microscope with a through-the-lens detector. Appl Phys Lett. 14 7 2003;83(2):293–295.
  • Kazemian P, Mentink SAM, Rodenburg C, et al. Quantitative secondary electron energy filtering in a scanning electron microscope and its applications. Ultramicroscopy. 2 2007;107(2–3):140–150.
  • Rodenburg C, Jepson MA, Inkson BJ, et al. Energy filtered scanning electron microscopy: applications to characterisation of semiconductors. J Phy: Conference Series. 2010.
  • Orji NG, Badaroglu M, Barnes BM, et al. Metrology for the next generation of semiconductor devices. Nat Electron. 2018;1:532–547.
  • A. J. Garrat-Reed and D. C. Bell, Energy dispersive X-ray analysis in the electron microscope, 1st ed., M. Rainforth, editor, London: Garland Science; 2003.
  • Reimer L. Scanning electron microscopy: physics of image formation and microanalysis. 2nd ed., Berlin: Springer; 1998. p. 527.
  • Friel JJ, Lyman CE. X-ray mapping in electron-beam instruments. Microsc Microanal. 2006;12:2–25.
  • Willich P, Bethke R. “Practical aspects and applications of EPMA at low electron energies,” in Microbeam and nanobeam analysis. Vienna: Springer; 1996. p. 631–638.
  • Boyes ED. Analytical potential of EDS at low voltages. Mikrochim Acta. 2002;138:225–234.
  • Belhaj M, Jbara O, Odof S, et al. An anomalous contrast in scanning electron microscopy of insulators: the pseudo-mirror effect. Scanning. 1 1 2000;22(6):352–356.
  • Castaing R. Application of electron probes to local chemical and crystalographic analysis [PhD Thesis]. Paris: University of Paris; 1951.
  • Newbury DE, Ritchie NW. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative? Scanning. 5 2013;35(3):141–168.
  • Newbury DE. Castaing’s electron microprobe and its impact on materials science. Microsc Microanal. 2001;7(2):178–192.
  • Burgess S, Li X, Holland J. “High spatial resolution energy dispersive X-ray spectrometry in the SEM and the detection of light elements including lithium,” 2013.
  • Jany BR, Janas A, Krok F. Retrieving the quantitative chemical information at nanoscale from scanning electron microscope energy dispersive X-ray measurements by machine learning. Nano Lett. 2017;17(11):6520–6525.
  • Friel JJ, Lyman CE. Tutorial review: X-ray mapping in electron-beam instruments. Microsc Microanal. 2006;12:2–25.
  • Rinaldi R, Llovet X. Electron probe microanalysis: a review of the past, present, and future. Microsc Microanal. 2015;21:1053–1069.
  • Terauchi M, Koshiya S, Satoh F, et al. Chemical state information of bulk specimens obtained by SEM-based soft-X-ray emission spectrometry. Microsc Microanal. 2014;20:692–697.
  • Cazaux J. Auger microscopy and electron probe microanalysis. In: Boekestein A, Pavićević MK, editors. Electron microbeam analysis. Mikrochimica Acta. vol. 12, Vienna: Springer; 1992. p. 37–52.
  • Meitner L. Uber den Zusammenhang zwischen β- und γ-Strahlen. L. Z. Physik. 1922;9(1):145–152.
  • Auger P. Sur les rayons β secondaires produits dans un gaz par des rayons X. C.R.A.S. 1923;177:169–171.
  • Auger P. The Auger effect. Surf Sci. 1 3 1975;48(1):1–8.
  • Palmberg PW. Optimisation of Auger electron spectroscopy in LEED systems. Appl Phys Lett. 1968;13:183.
  • Chang CC. Auger electron spectroscopy. Surf Sci. 3 1971;25(1):53–79.
  • Bargeron CB. High vacuum scanning electron microscopy as a tool in surface analysis. Laurel (MD); 1980.
  • Rades S, Hodoroaba VD, Salge T, et al. High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles. RSC Adv. 2014;4(91):49577–49587.
  • Taylor NJ. Auger electron spectrometer as a tool for surface analysis (contamination monitor). Citation: J Vac Sci Technol. 1969;6(241).
  • Willis RF, Fitton B, Skinner DK. Study of carbon-fiber surfaces using Auger and secondary electron emission spectroscopy. J Appl Phys. 1972;43(11):4412–4419.
  • Baer DR, Engelhard MH, Johnson GE, et al. Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities. J Vac Sci Technol A: Vac Surf Films. 9 2013;31(5):050820.
  • Powell CJ. Growth and trends in Auger-electron spectroscopy and x-ray photoelectron spectroscopy for surface analysis. Citation: J Vac Sci Technol A. 2003;21:42.
  • Cressey D. Tiny traits cause big headaches. vol. 467, Nature Publishing Group; 2010. pp. 264–265.
  • Stefaniak AB, Hackley VA, Roebben G, et al. Nanoscale reference materials for environmental, health and safety measurements: needs, gaps and opportunities. Nanotoxicology. 7 12 2013;7(8):1325–1337.
  • Turner NH, Schreifels JA. Surface analysis: X-ray photoelectron spectroscopy and Auger electron spectroscopy. Anal Chem. 1992;64(12):302–320.
  • Webb LJ, Michalak DJ, Biteen JS, et al. High-resolution soft X-ray photoelectron spectroscopic studies and scanning Auger microscopy studies of the air oxidation of alkylated silicon (111) surfaces, 2006.
  • Macdonald NC, Waldrop JR. Auger electron spectroscopy in the scanning electron microscope: Auger electron images. Appl Phys Lett. 1971;19:315.
  • El Gomati MM, Prutton M. Monte Carlo calculations of the spatial resolution in a scanning Auger electron microscope. Surf Sci. 1 4 1978;72(3):485–494.
  • Holm R, Reinfandt B. Auger microanalysis in a conventional scanning electron microscope. Scanning. 1978;1(1):42–57.
  • Jacka M. Scanning Auger microscopy: recent progress in data analysis and instrumentation. J Electron Spectros Relat Phenomena. 2001;114-116:277–282.
  • Hofmann S. In: G Ertl, H Lüth, DL Mills, editors. Auger- and x-ray photoelectron spectroscopy in materials science: a user-oriented guide,. Berlin; Heidelberg: Springer; 2013. p. 528.
  • Schwarzer RA, Hjelen J. Backscattered electron imaging with an EBSD detector. Micros Today. 1 2015;23(1):12–17.
  • Joy DC, Newbury DE, Davidson DL. Electron channeling patterns in the scanning electron microscope. J Appl Phys. 1982;53(8):81–122.
  • Henini M. Scanning electron microscopy: an introduction. III-Vs Rev. 2000;13(4):40–44.
  • Venables JA, Harland CJ. Electron back-scattering patterns – a new technique for obtaining crystallographic information in the scanning electron microscope. Philos Mag. 1973;27(5):1193–1200.
  • Suga M, Asahina S, Sakuda Y, et al. Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Prog Solid State Chem. 1 5 2014;42(1–2):1–21.
  • Joy DC. Contrast in high-resolution scanning electron microscope images. J Microsc. 2 1991;161(2):343–355.
  • Mckay KG. Secondary electron emission. Adv Electron Electron Phys. 1948;1(C):65–130.
  • Seiler H. Secondary electron emission in the scanning electron microscope. J Appl Phys. 1983;54(11):R1–R18.
  • Kanaya K, Kawakatsu H. Secondary electron emission due to primary and backscattered electrons. J Phys D: Appl Phys. 1972;5:1727–1742.
  • Joens MS, Huynh C, Kasuboski JM, et al. Helium Ion microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution. Sci Rep. 17 12 2013;3:3514.
  • Everhart TE, Wells OO, Oatley CW. Factors affecting contrast and resolution in the scanning electron microscope. J Electron Control. 1 8 1959;7(2):97–111.
  • Everhart TE, Thornley RFM. Wide-band detector for micro-microampere low-energy electron currents. J Sci Instrum. 1960;37(7):246–248.
  • Rodenburg C, Jepson MA, Bosch EG, et al. Energy selective scanning electron microscopy to reduce the effect of contamination layers on scanning electron microscope dopant mapping. Ultramicroscopy. 8 2010;110(9):1185–1191.
  • Haworth LJ. The energy distribution of secondary electrons from molybdenum. Phys Rev. 1 7 1935;48(1):88–95.
  • Kollath R. Zur Energieverteilung der Sekundärelektronen II. Meßergebnisse und Diskussion. Ann Phys. 1947;436(7-8):357–380.
  • Röder A. Secondary electron microanalysis. Mikrochim Acta. 1992;107:105–116.
  • Joy DC, Prasad MS, Meyer HM. Experimental secondary electron spectra under SEM conditions. J Microsc. 7 2004;215(1):77–85.
  • Mil’shteinand S, Joy DC. Microanalysis using secondary electrons in scanning electron microscopy. Scanning. 7 12 2006;23(5):295–297.
  • Bellissimo A, Pierantozzi GM, Ruocco A, et al. Secondary electron generation mechanisms in carbon allotropes at low impact electron energies. J Electron Spectros Relat Phenomena. 2019.
  • Ueno N, Sugita K, Seki K, et al. “Low-energy electron transmission and secondary-electron emission experiments on crystalline and molten long-chain alkanes,” 1986.
  • Hoffman A, Nybergs GL, Prawert S. “High-energy angle-resolved secondary-electron emission spectroscopy of highly oriented pyrolytic graphite,” 1990.
  • Hoffman A, Prawer S, Kalish R. Structural transformation of diamond induced by 1-keV Ar-ion irradiation as studied by Auger and secondary-electron spectroscopies and total-secondary-electron-yield measurements. Phys Rev B Condens Matter. 1992;45(22):12736–12745.
  • Abrams KJ, Dapor M, Stehling N, et al. Making sense of complex carbon and metal/carbon systems by secondary electron hyperspectral imaging. Adv Sci. 7 10 2019;6(19):1900719.
  • Kumar V, Schmidt WL, Schileo G, et al. Supplementary information: nano-scale mapping of bromide segregation on cross-sections of complex hybrid Perovskite photovoltaic films using secondary electron hyperspectral imaging in the Scanning Electron Microscope,” 2017.
  • Ferrón J, Vidal RA, Bajales N, et al. Role of HOPG density of empty electronic states above vacuum on electron emission spectra induced by ions and UV photons. Surf Sci. 1 7 2014;622:83–86.
  • Farr N, Pashneh-Tala S, Claeyssens F, et al. Characterising cross-linking within polymeric biomaterials in the SEM by secondary electron hyperspectral imaging. (tbc) ACCEPTED. 2019;20.
  • Kumar V, Schmidt WL, Schileo G, et al. Nanoscale mapping of bromide segregation on the cross sections of complex hybrid perovskite photovoltaic films using secondary electron hyperspectral imaging in a scanning electron microscope. ACS Omega. 31 5 2017;2(5):2126–2133.
  • Dapor M. Monte Carlo simulation of secondary electron emission from dielectric targets. J Phys: Conf Ser. 2012.
  • Ridzel OY, Astašauskas V, Werner WS. Low energy (1–100 eV) electron inelastic mean free path (IMFP) values determined from analysis of secondary electron yields (SEY) in the incident energy range of 0.1–10 keV. J Electron Spectros Relat Phenomena. 2 2019;12.
  • Demers H, Poirier-Demers N, Couture AR, et al. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning. 5 2011;33(3):135–146.
  • Drouin D, Couture AR, Joly D, et al. CASINO v2.42 – a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning. 5 2007;29(3):92–101.
  • Azzolini M, Morresi T, Abrams K, et al. Anisotropic approach for simulating electron transport in layered materials: computational and experimental study of highly oriented pyrolitic graphite. J Phys Chem. 2018;122:10159–10166.
  • Dapor M, Masters RC, Ross I, et al. Secondary electron spectra of semi-crystalline polymers – a novel polymer characterisation tool? J Electron Spectros Relat Phenomena. 1 1 2018;222:95–105.
  • Ono S, Kanaya K. The energy dependence of secondary emission based on the range-energy retardation power formula. J Phys D: Appl Phys. 1979;12:619–632.
  • Shiraishi M, Ata M. Work function of carbon nanotubes. Carbon N Y. 2001;39(12):1913–1917.
  • Joy DC. Resolution in low voltage scanning electron microscopy. J Microsc. 12 1985;140(3):283–292.
  • Drouin D, Hovington P, Gauvin R. CASINO: a new monte carlo code in C language for electron beam interactions-part II: tabulated values of the mott cross section. Scanning. 7 12 1997;19(1):20–28.
  • Mullejans H, Bleloch AL, Howie A, et al. Secondary electron coincidence detection and time of flight spectroscopy. Ultramicroscopy. 1993;52(3-4):360–368.
  • Knoll M. Aufladepotentiel und sekundäremission elektronenbestrahlter körper. Zeitschrift für Technische Physik. 1935;16:467–475.
  • Joy DC. Control of charging in low-voltage SEM. Scanning. 1989;11(1):1–4.
  • Walker CG, El-Gomati MM, Assa’d AM, et al. The secondary electron emission yield for 24 solid elements excited by primary electrons in the range 250-5000 ev: a theory/experiment comparison. Scanning. 9 2008;30(5):365–380.
  • Gomati MMEL, Walker CGH, Assa’d AMD, et al. Theory experiment comparison of the electron backscattering factor from solids at low electron energy (250–5,000 eV). Scanning. 1 2008;30(1):2–15.
  • Smaragdis P, Fevotte C, Mysore GJ, et al. Static and dynamic source separation using nonnegative factorizations: a unified view. IEEE Signal Process Mag. 2014;31(3):66–75.
  • Gowen AA, Marini F, Esquerre C, et al. Time series hyperspectral chemical imaging data: challenges, solutions and applications. Anal Chim Acta. 2011;705:272–282.
  • Dobigeon N, Brun N. Spectral mixture analysis of EELS spectrum-images. Ultramicroscopy. 9 2012;120:25–34.
  • Bonnet N, Brun N, Colliex C. Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis. Ultramicroscopy. 7 1999;77(3-4):97–112.
  • Muto S, Yoshida T, Tatsumi K. Diagnostic nano-analysis of materials properties by multivariate curve resolution applied to spectrum images by S/TEM-EELS. Mater Trans. 2009;50(5):964–969.
  • Shiga M, Tatsumi K, Muto S, et al. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization. Ultramicroscopy. 1 11 2016;170:43–59.
  • Wan Q, Abrams KJ, Masters RC, et al. Mapping nanostructural variations in silk by secondary electron hyperspectral imaging. Adv Mater. 2017;29:1703510.
  • Rodenburg C, Jepson MAE, Inkson BJ, et al. Energy filtered scanning electron microscopy: applications to dopant contrast. J Phys Conf Ser. 2010;209:012053.
  • Konvalina I, Mika F, Krátký S, et al. In-lens band-pass filter for secondary electrons in ultrahigh resolution SEM. Mater (Basel). 19 7 2019;12(14):2307.
  • Stehling N, Abrams KJ, Holland C, et al. Revealing spider silk’s 3D nanostructure through low temperature plasma etching and advanced low-voltage SEM. Frontiers Mater. 1 2019;5(25).
  • Khursheed A. Scanning electron microscope optics and spectrometers. World Scientific Publishing; 2011. p. 402.
  • El-Gomati M, Zaggout F, Jayacody H, et al. Why is it possible to detect doped regions of semiconductors in low voltage SEM: a review and update. Surf Interface Anal. 1 11 2005;37(11):901–911.
  • Hashimoto Y, Takeuchi S, Sunaoshi T, et al. Voltage contrast imaging with energy filtered signal in a field-emission scanning electron microscope. Ultramicroscopy. 2 2020;209(1).
  • Herzing AA, Richter LJ, Anderson IM. 3D nanoscale characterization of thin-Film organic photovoltaic device structures via spectroscopic contrast in the TEM. J Phys Chemistry C. 21 10 2010;114(41):17501–17508.
  • Abrams KJ, Wan Q, Stehling NA, et al. Nanoscale mapping of semi-crystalline polypropylene. Phys Status Solidi (C) Current Topics Solid State Phys. 1 12 2017;14(12).
  • Zhou Y, Fox DS, Maguire P, et al. Quantitative secondary electron imaging for work function extraction at atomic level and layer identification of graphene. Sci Rep. 2 2016;6(16).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.