1,029
Views
34
CrossRef citations to date
0
Altmetric
Review

Research status and development of magnesium matrix composites

, , &
Pages 645-653 | Received 14 Dec 2019, Accepted 17 Feb 2020, Published online: 01 Mar 2020

References

  • Tresa MP. Weight loss with magnesium alloys. Science. 2010;328:986–987.
  • Sandlöbes S, Friák M, Korte-Kerzel S, et al. A rare-earth free magnesium alloy with improved intrinsic ductility. Sci Rep. 2017;7(1):10458–10464.
  • Tang S, Xin TZ, Xu WQ, et al. Precipitation strengthening in an ultralight magnesium alloy. Nat Commun. 2019;10:1003–1010.
  • Sravya T, Sankaranarayanan S, Abdulhakim A, et al. Mechanical properties of magnesium-rare earth alloy systems: a review. Metals. 2015;5:1–39.
  • Mark RS. Magnesium: applications and advanced processing in the automotive industry. JOM. 2008;60(11):56–56.
  • Suh BC, Shim MS, Shin KS, et al. Current issues in magnesium sheet alloys: where do we go from here? Scr Mater. 2014;84–85:1–6.
  • Wang HY, Yu ZP, Zhang L, et al. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process. Sci Rep. 2015;5(1):17100–17108.
  • Xu WQ, Nick B, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy. Nat Mater. 2015;14:1229–1235.
  • Sravya T, Yogesh N, Nitish B, et al. A strong and deformable in-situ magnesium nanocomposite igniting above 1000°C. Sci Rep. 2018;8(1):7038–7047.
  • Kang H, Choi HJ, Kang SW, et al. Multi-functional magnesium alloys containing interstitial oxygen atoms. Sci Rep. 2016;6:23184–23191.
  • Hidetoshi S, Alok S, Ryoji S, et al. Excellent room temperature deformability in high strain rate regimes of magnesium alloy. Sci Rep. 2018;8(1):656–664.
  • Ashis M, Khin ST, Manoj G. Deformation behaviour of Mg/Y2O3 nanocomposite at elevated temperatures. Mater Sci Eng A. 2012;551:222–230.
  • Ye HZ, Liu XY. Review of recent studies in magnesium matrix composites. J Mater Sci. 2004;39(20):6153–6171.
  • Liao WJ, Ye B, Zhang L, et al. Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging. Mater Sci Eng A. 2015;642:49–56.
  • Balasubramanian I, Maheswaran R, Manikandan V, et al. Mechanical characterization and machining of squeeze cast AZ91D/SiC magnesium based metal matrix composites. Procedia Manuf. 2018;20:97–105.
  • Dwivedi SP, Sharma S, Mishra RK. A comparative study of waste eggshells, CaCO3, and SiC-reinforced AA2014 green metal matrix composites. J Compos Mater. 2016;51:2407–2421.
  • Gu L, Chen JP, Xu H, et al. Blasting erosion arc machining of 20 vol. % SiC/Al metal matrix composites. Int J Adv Manuf Tech. 2016;87(9-12):2775–2784.
  • Chen LY, Xu JQ, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature. 2015;528(7583):539–543.
  • Guo SQ, Wang RC, Peng CQ, et al. Microstructures and mechanical properties of Ni-coated SiC particles reinforced AZ61 alloy composites. Trans Nonferrous Met Soc China. 2019;29:1854–1863.
  • Asgari A, Sedighi M, Krajnik P. Magnesium alloy-silicon carbide composite fabrication using chips waste. J Clean Prod. 2019;232:1187–1194.
  • Sepideh K, Daniela H, Alireza G, et al. Enhanced strength and ductility in magnesium matrix composites reinforced by a high volume fraction of nano- and submicron-sized SiC particles produced by mechanical milling and hot extrusion. Materials. 2019;12:3445–3454.
  • Wei H, Li ZQ, Xiong DB, et al. Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design. Scr Mater. 2014;75:30–33.
  • Popov VN. Carbon nanotubes: properties and application. Mater Sci Eng R Rep. 2004;43(3):61–102.
  • Tjong SC. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and grapheme nanosheets. Mater Sci Eng R. 2013;74(10):281–350.
  • Chen B, Li SF, Imai H, et al. Inter-wall bridging induced peeling of multi-walled carbon nanotubes during tensile failure in aluminum matrix composites. Micron. 2015;69:1–5.
  • Esawi AMK, Morsi K, Sayed A, et al. Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol. 2010;70(16):2237–2241.
  • Srinivasa RB, Arvind A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon N Y. 2011;49(2):533–544.
  • Esawi A, Morsi K. Dispersion of carbon nanotubes (CNTs) in aluminum powder. Compos A: Appl Sci Manuf. 2007;38(2):646–650.
  • Song JH, Abbas A, Ballóková B. Effect of CNT on microstructure, dry sliding wear and compressive mechanical properties of AZ61 magnesium alloy. J Mater Res Technol. 2019;8(5):4273–4286.
  • Anita OM, Patryk W, Hanna M, et al. Impact of the morphology of micro- and nanosized powder mixtures on the microstructure of Mg-Mg2Si-CNT composite sinters. Materials. 2019;12:3242–3257.
  • Sabetghadam-Isfahani A, Abbasi M, Sharifi SMH, et al. Microstructure and mechanical properties of carbon nanotubes/AZ31 magnesium composite gas tungsten arc welding filler rods fabricated by powder metallurgy. Diamond & Related Materials. 2016;69(C):160–165.
  • Mehran D, Abdollah S, Paolo F. An overview of the recent developments in metal matrix nanocomposites reinforced by graphene. Materials (Basel). 2019;12:2823–2860.
  • Alexander AB. Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 2011;10(8):569–581.
  • Tahriri M, Monico MD, Moghanian A, et al. Graphene and its derivatives: opportunities and challenges in dentistry. Mater Sci Eng C. 2019;102:171–185.
  • Sinan K. Development of graphene nanoplatelet-reinforced AZ91 magnesium alloy by solidification processing. J Mater Eng Perform. 2018;27(6):3014–3023.
  • Muhammad R, Fusheng P, Dong L, et al. High temperature mechanical behavior of AZ61 magnesium alloy reinforced with graphene nanoplatelets. Mater Design. 2016;89:1242–1250.
  • Yang Z, Xu HY, Wang Y, et al. Investigation of the microstructure and mechanical properties of AZ31/graphene composite fabricated by semi-solid isothermal treatment and hot extrusion. JOM. 2019;71(11):4162–4170.
  • Nie KB, Wang XJ, Wu K, et al. Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration. Mat Sci Eng A-Struct. 2012;540(none):123–129.
  • Han G, Wang Z, Liu K, et al. Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs. Mat Sci Eng A. 2015;628:350–357.
  • Yuan QH, Zeng XS, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO. Carbon. 2016;96(1):843–855.
  • Yuan QH, Zhou GH, Liao L, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets. Carbon. 2018;127:177–186.
  • Rashad M, Pan F, Liu Y, et al. High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method. J Magnes Alloy. 2016;4:270–277.
  • Yang Z, Xu HY, Wang Y, et al. Influence of reheating temperature on the microstructures and tensile properties of a short-carbon-fiber-reinforced magnesium matrix composite. Mater Res Express. 2019;6:1–9.
  • Yan SJ, Dai SL, Zhang XY, et al. Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng A. 2014;612:440–444.
  • Cui Y, Wang L, Li B, et al. Effect of ball milling on the defeat of few-layer graphene and properties of copper matrix composites. Acta Metall. (Engl Lett.). 2014;27(5):937–943.
  • Pravir K, MilliSuchita K, Ashis M, et al. Effect of graphenenano-platelets on the mechanical properties of Mg/3 wt. %Al alloy-nanocomposite. Mater Sci Eng. 2018;346:1–9.
  • Mark RS, Richard T, Maria P. The effect of thermal cycling on the properties of a carbon fibre reinforced magnesium composite. Mater Sci Eng A. 2005;397(1-2): 249–256.
  • Lukasz R, Lidia LD. Effect of in-situ formed MgO on the microstructure of thixomolded AZ91 magnesium alloy. Mater Sci Technol. 2019;35(3):349–360.
  • Yao YT, Chen LQ, Wang WG. Damping capacities of (B4C + Ti) hybrid reinforced Mg and AZ91D composites processed by in situ reactive infiltration technique. Acta Metall Sin. 2019;55(1):141–148.
  • Shi Q, Hu ML, Wang F, et al. Microstructure and mechanical properties of double-sizes Al2O3/AZ31 magnesium matrix composites prepared by hot extrusion. T Mater Heat Treat. 2019;40(5):32–36.
  • Rashad M, Pan FS, Hu HH, et al. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Mater Sci Eng A. 2015;630:36–44.
  • Rafiee MA, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano. 2009;3(12):3884–3890.
  • Shi DL, Feng XQ, Huang YY, et al. Critical evaluation of the stiffening effect of carbon nanotubes in composites. Key Eng Mater. 2004;261–263:1487–1492.
  • German R. Sintering: from empirical observations to scientific principles. Pennsylvania (USA): Butterworth-Heinemann; 2014.
  • Ghasali E, Ebadzadeh T, Alizadeh M, et al. Spark plasma sintering of WC-based cermets/titanium and vanadium added composites: a comparative study on the microstructure and mechanical properties. Ceram Int. 2018;44:10646–10656.
  • Ghasali E, Pakseresht A, Rahbari A, et al. Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al-SiC-TiC composites. J Alloys Compd. 2016;666:366–371.
  • Ghasali E, Pakseresht A, Safari-kooshali F, et al. Investigation on microstructure and mechanical behavior of Al-ZrB2 composite prepared by microwave and spark plasma sintering. Mater Sci Eng A. 2015;627:27–30.
  • Ghasali E, Pakseresht AH, Alizadeh M, et al. Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering. J Alloys Compd. 2016;688:527–533.
  • Ghasali E, Alizadeh M, Niazmand M, et al. Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: comparison between microwave and spark plasma sintering. J Alloy Comp. 2017;697:200–207.
  • Ghasali E, Alizadeh M, Shirvanimoghaddam K, et al. Porous and non-porous alumina reinforced magnesium matrix composite through microwave and spark plasma sintering processes. Mater Chem Phys. 2018;212:252–259.
  • Ghasali E, Yazdani-rad R, Asadian K, et al. Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods. J Alloy Comp. 2017;690:512–518.
  • Hesabi ZR, Mazaheri M, Ebadzadeh T. Enhanced electrical conductivity of ultrafine-grained 8Y2O3 stabilized ZrO2 produced by two-step sintering technique. J Alloys Compd. 2010;494(1-2):362–365.
  • Ghasalia E, Bordbar-Khiabani A, Alizadeh M, et al. Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process. Mater Chem Phys. 2019;225:331–339.
  • Su LZ, Qi LH, Wang XY, et al. Effect of hydrostatic pressure on fiber orientation and deformation of C-sf/AZ91D composite in thixo-extrusion. Rare Metal Mat Eng. 2019;48(3):739–743.
  • Xiang SL, Gupta M, Wang XJ, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets. Compos Part A. 2017;100:183–193.
  • Gupta M, Wong WLE. Magnesium-based nanocomposites: lightweight materials of the future. Mater Charact. 2015;105:30–46.
  • Krisztian N, Nikolett V, Balazs R, et al. Synthesis and investigation of SiO2-MgO coated MWCNTs and their potential application. Sci Rep. 2019;9:1–11.
  • Parizi MT, Ebrahimi GR, Ezatpour HR, et al. The structure effect of carbonaceous reinforcement on the microstructural characterization and mechanical behavior of AZ80 magnesium alloy. J Alloy Compd. 2019;809:1–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.