222
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Phase transformation and microstructure evolution of pearlite heat-resistant steel during heating

, , , ORCID Icon, , & show all
Pages 771-782 | Received 02 Jan 2020, Accepted 01 Mar 2020, Published online: 09 Apr 2020

References

  • Adámovich VK. Effect of the Molybdenum content on the properties of pearlitic heat-resistant steels. Met Sci Heat Treat. 1977;19:949–955. doi: 10.1007/BF00670164
  • Wang J, Sun J, Yu X, et al. Microstructures and mechanical properties of 12Cr1MoVG Tube welded joints with/without post-weld heat treatment. J Mater Eng Perf. 2017;26:4659–4666. doi: 10.1007/s11665-017-2936-8
  • He J, Xiong W. Effect of high temperature hot corrosion on the compression creep behavior of 12Cr1MoV Alloys. H Temp Mater Proc. 2017;36:1011–1023.
  • Dippenaar RJ, Phelan DJ. Delta-ferrite recovery structures in low-carbon steels. Metall Mater Trans, B. 2003;34:495–501. doi: 10.1007/s11663-003-0016-y
  • Liang GF, Wang C, Fang Y. In situ observation of nucleation and growth of high-temperature delta phase in stainless steel AISI 304 during heating. Acta Metall Sin 2006;42:805–809.
  • Liang GF, Wan CQ, Wu JC, et al. In situ observation of growth behavior and morphology of delta-ferrite as function of solidification rate in an AISI304 stainless steel. Acta Metall Sin. 2006;19:441–448. doi: 10.1016/S1006-7191(06)62085-1
  • Griesser S, Bernhard C, Dippenaar R. Mechanism of the peritectic phase transition in Fe-C and Fe-Ni alloys under conditions close to chemical and thermal equilibrium. ISIJ Int 2014;54:466–473. doi: 10.2355/isijinternational.54.466
  • Griesser S, Bernhard C, Dippenaar R. Effect of nucleation undercooling on the kinetics and mechanism of the peritectic phase transition in steel. Acta Mater 2014;81:111–120. doi: 10.1016/j.actamat.2014.08.020
  • Griesser S, Reid M, Bernhard C, et al. Diffusional constrained crystal nucleation during peritectic phase transitions. Acta Mater 2014;67:335–341. doi: 10.1016/j.actamat.2013.12.018
  • Liu N, Liu F, Yang GC, et al. Peritectic solidification of undercooled Fe-Co alloys. J. Alloys Compd. 2008;465:391–395. doi: 10.1016/j.jallcom.2007.10.120
  • Wang Y, Yu H, Liu Y, et al. Effects of annealing treatment on microstructure and mechanical property of cold-drawn 316L stainless steel fibers. Mater. Sci. Eng. A. 2018;714:93–104. doi: 10.1016/j.msea.2017.12.064
  • Pandey C, Mahapatra MM, Kumar P, et al. Microstructure characterization and charpy toughness of P91 weldment for as-welded, post-weld heat treatment and normalizing and tempering heat treatment. Met Mater Int. 2017;23:900–914. doi: 10.1007/s12540-017-6850-2
  • Zhu X, Li W, Hsu TY. Improved resistance to hydrogen embrittlement in a high-strength steel by quenching–partitioning–tempering treatment. Scr Mater. 2015;97:21–24. doi: 10.1016/j.scriptamat.2014.10.030
  • Yang Y, Tan H, Zhang Z, et al. Effect of annealing temperature on the pitting corrosion behavior of UNS S82441 duplex stainless steel. Corr. 2013;69:167–173. doi: 10.5006/0717
  • Guthrie RIL, Jonas JJ. ASM handbook: properties and selection: irons, steels and high performance alloys. 10th edn Vol. 1, 115–116; Materials Park (OH): ASM International; 1990.
  • Banerjee K, Militzer M, Perez M, et al. Nonisothermal austenite grain growth kinetics in a microalloyed x80 linepipe steel. Metall Mater Trans A. 2010;41A:3161–3172. doi: 10.1007/s11661-010-0376-2
  • Cui ZQ, Tan YC. Metallography and heat treatment. Beijing: China Machine Press; 2000; 114–116.
  • Khalaj G, Yoozbashizadeh H, Khodabandeh A, et al. Austenite grain growth modelling in weld heat affected zone of Nb/Ti microalloyed linepipe steel. Mater Sci Technol 2014;30:424–433. doi: 10.1179/1743284713Y.0000000364
  • Akbay T, Reed RC, Atkinson C. Modelling reaustenitisation from ferrite/cementite mixtures in Fe-C steels. Acta Metall Mater. 1994;42:1469–1480. doi: 10.1016/0956-7151(94)90165-1
  • Miyamoto G, Usuki H, Li ZD, et al. Effects of Mn, Si and Cr addition on reverse transformation at 1073 K from spheroidized cementite structure in Fe-0.6 mass% C alloy. Acta Mater 2010;58:4492–4502. doi: 10.1016/j.actamat.2010.04.045
  • Akbay T, Atkinson C. The influence of diffusion of carbon in ferrite as well as in austenite on a model of reaustenitization from ferrite/cementite mixtures in Fe-C steels. J Mater Sci 1996;31:2221–2226. doi: 10.1007/BF01152931
  • Yin H, Emi T, Shibata H. Morphological instability of δ-ferrite/γ-austenite interphase boundary in low carbon steels. Acta Mater 1999;47:1523–1535. doi: 10.1016/S1359-6454(99)00022-1
  • Si WU, Li XC, Juan Z. Influence of Nb micro-alloying on austenite nucleation and growth in high speed railway wheels steel. Iron Steel. 2015;50:100–107.
  • Xu Z, Zhao LC. Principle of solid metal phase transition. Beijing: science press; 2004; 41–43.
  • Nakai K, Ohmori Y. Pearlite to austenite transformation in a Fe-2.6Cr-1C alloy. Acta Mater. 1999;47:2619–2632. doi: 10.1016/S1359-6454(99)00142-1
  • Sun YH, Zhao Y, Li X. Effects of heating and cooling rates on δ↔γ phase transformations in duplex stainless steel by in situ observation. Ironmak Steelmak. 2019;46:1–8. doi: 10.1080/03019233.2019.1659657
  • Zhao Y, Sun YH, Li X. In-situ observation of δ↔γ phase transformations in duplex stainless steel containing different nitrogen contents. ISIJ Int. 2017;57:1637–1644. doi: 10.2355/isijinternational.ISIJINT-2017-125

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.