219
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Effect of extrusion temperature on mechanical properties of as-extruded Zn–22Al alloys

ORCID Icon, , &
Pages 805-810 | Received 14 Sep 2019, Accepted 13 Mar 2020, Published online: 25 Mar 2020

References

  • Langdon TG. Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci. 2009;44:5998–6010. doi: 10.1007/s10853-009-3780-5
  • Sun SN, Ren YP, Wang LQ, et al. Room temperature quasi-superplasticity behavior of backward extruded Zn-15Al alloys. Mater Sci Eng: A. 2016;676:336–341. doi: 10.1016/j.msea.2016.09.013
  • Zhang YM, Yang LJ, Zeng XD, et al. The mechanism of anneal-hardening phenomenon in extruded Zn-Al alloys. Mater Des. 2016;50:223–229. doi: 10.1016/j.matdes.2013.02.069
  • Demirtas M, Purcek G, Yanar H, et al. Achieving room temperature superplasticity in Zn-5Al alloy at high strain rates by equal-channel angular extrusion. J Alloys Compd. 2015;623:213–218. doi: 10.1016/j.jallcom.2014.10.111
  • Demirtas M, Purcek G, Yanar H, et al. Effect of equal-channel angular pressing on room temperature superplasticity of quasi-single phase Zn-0.3Al alloy. Mater Sci Eng: A. 2015;644:17–24. doi: 10.1016/j.msea.2015.07.041
  • Demirtas M, Purcek G, Yanar H, et al. Effect of natural aging on RT and HSR superplasticity of ultrafine grained Zn-22Al alloy. Mater Sci Forum. 2016;838–839:320–325. doi: 10.4028/www.scientific.net/MSF.838-839.320
  • Uesugi T, Kawasaki M, Ninomiya M, et al. Significance of Si impurities on exceptional room-temperature superplasticity in a high-purity Zn-22% Al alloy. Mater Sci Eng: A. 2015;645:47–56. doi: 10.1016/j.msea.2015.07.087
  • Demirtas M, Purcek G, Yanar H, et al. Effect of different processes on lamellar-free ultrafine grain formation, room temperature superplasticity and fracture mode of Zn-22Al alloys. J Alloys Compd. 2016;663:775–783. doi: 10.1016/j.jallcom.2015.12.142
  • Kumar P, Xu C, Langdon TG. Mechanical characteristics of a Zn-22% Al alloy processed to very high strains by ECAP. Mater Sci Eng: A. 2006;429:324–328. doi: 10.1016/j.msea.2006.05.044
  • Zhang YM, Zeng XD, Song ZL, et al. Phase-transformation-induced hardening in Zn-22Al alloys. Philos Mag Lett. 2013;93:322–330. doi: 10.1080/09500839.2013.776717
  • Toshiaki M, Goroh I, Yoshinobu M, et al. Microstructural evolution in Al-Zn eutectoid alloy by hot-rolling. Trans Nonferrous Met Soc China. 2014;24:2107–2111. doi: 10.1016/S1003-6326(14)63319-7
  • Li HY, Liu Y, Lu XC, et al. Constitutive modeling for hot deformation behavior of ZA27 alloy. J Mater Sci. 2012;47:5411–5418. doi: 10.1007/s10853-012-6427-x
  • Tanaka T, Makii K, Kushibe A, et al. Study on practical application of a new seismic damper using a Zn–Al alloy with a nanocrystalline microstructure. Int J Mech Sci. 2003;45:1599–1612. doi: 10.1016/j.ijmecsci.2003.12.001
  • Ji S, Fan Z. Extruded microstructure of Zn-5 wt-%Al eutectic alloy processed by twin screw extrusion. Mater Sci Technol. 2012;28:1287–1294. doi: 10.1179/1743284712Y.0000000064
  • Tanaka T, Makii K, Kushibe A, et al. Capability of superplastic forming in the seismic device using Zn-22Al eutectoid alloy. Scr Mater. 2003;49:361–366. doi: 10.1016/S1359-6462(03)00328-2
  • Cho TS, Lee HJ, Ahn B, et al. Microstructural evolution and mechanical properties in a Zn-Al eutectoid alloy processed by high-pressure torsion. Acta Mater. 2014;72:67–79. doi: 10.1016/j.actamat.2014.03.026
  • Xia SH, Wang J, Wang JT, et al. Improvement of room temperature superplasticity in Zn-22% Al alloy. Mater Sci Eng A. 2008;493:111–115. doi: 10.1016/j.msea.2007.07.100
  • Hirata T, Tanaka T, Chung SW, et al. Relationship between deformation behavior and microstructural evolution of friction stir processed Zn-22 wt.% Al alloy. Scr Mater. 2007;56:477–480. doi: 10.1016/j.scriptamat.2006.11.022
  • Chou CY, Lee SL, Lin JC, et al. Effects of cross-channel extrusion on the microstructures and superplasticity of a Zn-22 wt.% Al eutectoid alloy. Scr Mater. 2007;57:972–975. doi: 10.1016/j.scriptamat.2007.04.029
  • Sun SN, Li DY, Liu DY, et al. Microstructure and mechanical properties of continuous casting and extrusion Zn-15wt% Al alloys. Mater Lett. 2020;261:127090. doi: 10.1016/j.matlet.2019.127090
  • Cetin ME, Demirtas M, Sofuoglu H, et al. Effect of grain size on room temperature deformation behavior of Zn-22Al alloy under uniaxial and biaxial loading conditions. Mater Sci Eng A. 2016;672:78–87. doi: 10.1016/j.msea.2016.06.072
  • Savaşkant H. Microstructure and mechanical properties of Zn-15Al-based ternary and quaternary alloys. Mater Sci Eng A. 2014;603:52–57. doi: 10.1016/j.msea.2014.02.047
  • Kumar P, Xu C, Langdon TG. The significance of grain boundary sliding in the superplastic Zn-22% Al alloys after processing by ECAP. Mater Sci Eng A. 2006;410–411:447–450. doi: 10.1016/j.msea.2005.08.092
  • Demirtas M, Purcek G, Yanar H, et al. Improvement of high strain rate and room temperature superplasticty in Zn-22Al alloy by two-step equal-channel angular pressing. Mater Sci Eng A. 2015;620:233–240. doi: 10.1016/j.msea.2014.09.114
  • Tanaka T, Kohzu M, Takigawa Y, et al. Low cycle fatigue behavior of Zn-22 mass% Al alloy exhibiting high-strain-rate superplasticity at room temperature. Scr Mater. 2005;52:231–236. doi: 10.1016/j.scriptamat.2004.09.023
  • Choi IC, Yoo BG, Kraft O, et al. High-cycle fatigue behavior of Zn-22% Al alloy processed by high-pressure torsion. Mater Sci Eng A. 2014;618:37–40. doi: 10.1016/j.msea.2014.08.084
  • Kawasaki M, Langdon TG. Principles of superplasticity in ultrafine-grained materials. J Mater Sci. 2007;42:1782–1796. doi: 10.1007/s10853-006-0954-2
  • Yeh MS, Lin HY, Lin HY, et al. Superplastic micro-forming with a fine grained Zn-22Al eutectoid alloy using hot embossing technology. J Mater Process Technol. 2006;180:17–22. doi: 10.1016/j.jmatprotec.2006.04.013
  • Tanaka T, Kushibe A, Kohzu M, et al. Low-cycle fatigue properties of ultrafine-grained zinc-22 wt.% aluminum alloy during room-temperature superplastic flow. Scr Mater. 2008;59:215–218. doi: 10.1016/j.scriptamat.2008.03.005
  • Kawasaki M, Langdon TG. Flow behavior of a superplastic Zn-22 wt.% Al alloy processed by equal-channel angular pressing. Mater Sci Eng A. 2009;503:48–51. doi: 10.1016/j.msea.2008.04.081
  • Tanaka T, Chung SW, Chaing LF, et al. On applying superplastic Zn-22 wt.% Al alloy with nanocrystalline grains to general residential seismic dampers. Mater Sci Eng A. 2005;410–411:109–113. doi: 10.1016/j.msea.2005.08.115
  • Yan XQ, Liu SX, Long WM, et al. The effect of homogenization treatment on microstructure and properties of ZnAl15 solder. Mater Des. 2013;45:440–445. doi: 10.1016/j.matdes.2012.09.033
  • Yang CF, Pan JH, Lee TH, et al. Work-softening and anneal-hardening behaviors in fine-grained Zn-Al alloys. J Alloys Compd. 2009;468:230–236. doi: 10.1016/j.jallcom.2008.01.067
  • Kawasahi M, Langdon TG. Grain boundary sliding in a superplastic zinc-aluminum alloy processed using severe plastic deformation. Mater Trans. 2008;49:84–89. doi: 10.2320/matertrans.ME200720
  • Li GY, Ding H, Wang J, et al. Effect of strain on cavity development during Al-Zn-Mg-Cu alloy superplastic flow. Mater Sci Tech-Lond. 2019;35:939–945. doi: 10.1080/02670836.2019.1597485
  • Tanaka T, Makii K, Kushibe A, et al. Room temperature deformation behavior of Zn-22 mass% Al alloy with nanocrystalline structure. Mater Trans. 2002;43:2449–2454. doi: 10.2320/matertrans.43.2449

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.