336
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Nanoporous copper sonocatalysts prepared by dealloying Cu–Al–Ti amorphous ribbons

, , , ORCID Icon, &
Pages 1083-1091 | Received 12 Jan 2020, Accepted 04 Apr 2020, Published online: 21 Apr 2020

References

  • Zhang JT CML. Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems[J]. Chem Soc Rev. 2012;41(21):7016–7031. doi: 10.1039/c2cs35210a
  • Li R, Liu X, Wu R, et al. Flexible honeycombed nanoporous/glassy hybrid for efficient electrocatalytic hydrogen generation[J]. Adv Mater. 2019;31(49):1904989. doi: 10.1002/adma.201904989
  • Fujita T, Guan P, McKenna K, et al. Atomic origins of the high catalytic activity of nanoporous gold[J]. Nat Mater. 2012;11(9):775–780. doi: 10.1038/nmat3391
  • Qin C DZ, H Q. Flexible integrated metallic glass-based sandwich electrodes for high-performance wearable all-solid-state supercapacitors[J]. Appl Mater Today. 2020;19:100539. doi: 10.1016/j.apmt.2019.100539
  • Wang X, Li R, Li Z, et al. Design and preparation of nanoporous Ag-Cu alloys by dealloying Mg-(Ag. Cu)-Y metallic glasses for antibacterial applications[J]. J Mate Chem B. 2019;7(26):4169–4176. doi: 10.1039/C9TB00148D
  • Li R, Liu X J, Wang H, et al. Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering[J]. Corros Sci. 2014;84:159–164. doi: 10.1016/j.corsci.2014.03.023
  • Sukeri A, Saravia L PH, Bertotti M. A facile electrochemical approach to fabricate a nanoporous gold film electrode and its electrocatalytic activity towards dissolved oxygen reduction[J]. Phys Chem Chem Phys Pccp. 2015;17(43):28510–28514. doi: 10.1039/C5CP05220C
  • Detsi E, Sellès M S, Onck P R, et al. Nanoporous silver as electrochemical actuator[J]. Scr Mater. 2013;69(2):195–198. doi: 10.1016/j.scriptamat.2013.04.003
  • Liu H, He P, Li Z, et al. High surface area nanoporous platinum: facile fabrication and electrocatalytic activity[J]. Nanotechnology. 2006;17(9):2167–2173. doi: 10.1088/0957-4484/17/9/015
  • Wang Y, He C, Xing W, et al. Nanoporous metal membranes with bicontinuous morphology from recyclable block-copolymer templates[J]. Adv Mater. 2010;22(18):2068–2072. doi: 10.1002/adma.200903655
  • Hsueh H Y, Huang Y, Ho R, et al. Nanoporous gyroid nickel from block copolymer templates via electroless plating[J]. Adv Mater. 2011;23(27):3041–3046. doi: 10.1002/adma.201100883
  • Guo W, Kato H, Yamada R, et al. Fabrication and mechanical properties of bulk metallic glass matrix composites by in-situ dealloying method[J]. J Alloy Compd. 2017;707:332–336. doi: 10.1016/j.jallcom.2016.10.167
  • Hayes J R, Hodge A M, Biener J. Monolithic nanoporous copper by dealloying Mn-Cu[J]. J Mater Res. 2006;21(10):2611–2616. doi: 10.1557/jmr.2006.0322
  • Min U S, Li J C. The microstructure and dealloying kinetics of a Cu-Mn alloy[J]. J Mater Res. 1994;9(11):2878–2883. doi: 10.1557/JMR.1994.2878
  • Qi Z, Zhao C, Wang X, et al. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys[J]. J Phys Chem C. 2009;113(16):6694–6698. doi: 10.1021/jp810742z
  • Sun Y, Ren Y, Yang K. New preparation method of micron porous copper through physical vacuum dealloying of Cu-Zn alloys[J]. Mater Lett. 2016;165:1–4. doi: 10.1016/j.matlet.2015.11.102
  • Zhao C, Qi Z, Wang X, et al. Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg-Cu alloys[J]. Corros Sci. 2009;51(9):2120–2125. doi: 10.1016/j.corsci.2009.05.043
  • Xu H, Zhang T. Formation of ultrafine spongy nanoporous metals (Ni, Cu, Pd. Ag and Au) by dealloying metallic glasses in acids with capping effect [J]. Corros Sci. 2019;153:1–11. doi: 10.1016/j.corsci.2019.03.029
  • Zheng D, Zhao F, Li Y, et al. Flexible NiO micro-rods/nanoporous Ni/metallic glass electrode with sandwich structure for high performance supercapacitors[J]. Electrochim Acta. 2019;297:767–777. doi: 10.1016/j.electacta.2018.12.035
  • Zhang S, Ye S, Yu P. Novel dealloying structures and ageing behaviors of Cu-Zr metallic glass ribbons[J]. J Non Cryst Solids. 2017;458:61–64. doi: 10.1016/j.jnoncrysol.2016.12.016
  • Dan Z, Qin F, Sugawara Y, et al. Fabrication of nanoporous copper by dealloying amorphous binary Ti-Cu alloys in hydrofluoric acid solutions[J]. Intermetallics. 2012;29:14–20. doi: 10.1016/j.intermet.2012.04.016
  • Li M, Wang Z, Zhang Q, et al. Ultrafine Cu2O/CuO nanosheet arrays integrated with NPC/BMG composite rod for photocatalytic degradation [J]. Appl Surf Sci. 2019;483:285–293. doi: 10.1016/j.apsusc.2019.03.313
  • Li M, Wang Z, Zhang Q, et al. Formation and evolution of ultrathin Cu2O nanowires on NPC ribbon by anodizing for photocatalytic degradation [J]. Appl Surf Sci. 2020;506:144819. doi: 10.1016/j.apsusc.2019.144819
  • Qian L H, Chen M W. Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation[J]. Appl Phys Lett. 2007;91(8):83105. doi: 10.1063/1.2773757
  • Dona J M, Gonzalez-Velasco J. Mechanism of surface diffusion of gold adatoms in contact with an electrolytic solution[J]. J Phys Chem. 1993;97(18):4714–4719. doi: 10.1021/j100120a026
  • Dursun A, Pugh D V, Corcoran S G. Dealloying of Ag-Au alloys in halide-containing electrolytes affect on critical potential and pore size[J]. J Electrochem Soc. 2003;150(7):B355–B360. doi: 10.1149/1.1580824
  • Song T, Gao Y, Zhang Z, et al. Influence of magnetic field on dealloying of Al-25Ag alloy and formation of nanoporous Ag [J]. Cryst Eng Comm. 2012;14(10):3694–3701. doi: 10.1039/c2ce06404a
  • Li R, Liu X J, Wang H, et al. Formation mechanism and characterization of nanoporous silver with tunable porosity and promising capacitive performance by chemical dealloying of glassy precursor[J]. Acta Mater. 2016;105:367–377. doi: 10.1016/j.actamat.2015.12.042
  • Wang Z, Liu J, Qin C, et al. Fabrication and new electrochemical properties of nanoporous Cu by dealloying amorphous Cu-Hf-Al alloys[J]. Intermetallics. 2015;56:48–55. doi: 10.1016/j.intermet.2014.09.002
  • Jin Y, Li R, Zuo L, et al. Correlation between dealloying conditions and coarsening behaviors of nanoporous silver produced by chemical dealloying of Ca-Ag metallic glass[J]. J Alloys Compd. 2017;695:1600–1609. doi: 10.1016/j.jallcom.2016.10.304
  • Liu W B, Zhang S C, Li N, et al. A facile one-pot route to fabricate nanoporous copper with controlled hierarchical pore size distributions through chemical dealloying of Al-Cu alloy in an alkaline solution[J]. Microporous Mesoporous Mater. 2011;138(1–3):1–7. doi: 10.1016/j.micromeso.2010.10.003
  • Wang N, Pan Y, Wu S, et al. Fabrication of nanoporous copper with tunable ligaments and promising sonocatalytic performance by dealloying Cu-Y metallic glasses[J]. RSC Adv. 2017;7(68):43255–43265. doi: 10.1039/C7RA08390D
  • Wang N, Pan Y, Wu S. Relationship between dealloying conditions and coarsening behaviors of nanoporous copper fabricated by dealloying Cu-Ce metallic glasses[J]. J Mater Sci Technol. 2018;34(7):1162–1171. doi: 10.1016/j.jmst.2017.11.043
  • Wang C, Shih Y. Degradation and detoxification of diazinon by sono-Fenton and sono-Fenton-like processes[J]. Sep Purif Technol. 2014;140:6–12. doi: 10.1016/j.seppur.2014.11.005
  • Ma X, Cheng Y, Ge Y, et al. Ultrasound-enhanced nanosized Zero-valent copper activation of Hydrogen Peroxide for the degradation of norfloxacin[J]. Ultrason Sonochem. 2018;40:763–772. doi: 10.1016/j.ultsonch.2017.08.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.