320
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Effect of alloy elements on the weld of galvanised sheet studied by first-principles

, , , &
Pages 1139-1147 | Received 20 Nov 2019, Accepted 10 Apr 2020, Published online: 29 Apr 2020

References

  • Persson D, Thierry D, Karlsson O. Corrosion and corrosion products of hot dipped galvanized steel during long term atmospheric exposure at different sites world-wide. Corros Sci. 2017;126:152–165.
  • Anna M, Ambrus K. The replacement of resistance welding with laser beam welding. Acta Mater. Transilvanica. 2018;1(2):101–104.
  • Uchihara M. Joining technologies for automotive steel sheets. Weld Int. 2011;25(4):249–259.
  • Meng B, Wang R G, Tang X L, et al. Study on welding defects and preventive measures for of galvanized sheet metal. Modern Welding Technology. 2012;7:53–54.
  • Yang ZB, Li HZ, Wang B, et al. Study on the influence rule of porosity defects for double-sided laser beam welding of aluminum alloy T-joint. Infrared and Laser Engineering. 2018;47(9):1–8.
  • Costa JDM, Jesus JS, Loureiro A, et al. Fatigue life improvement of mig welded aluminium T-joints by friction stir processing. Int J Fatigue. 2014;61(4):244–254.
  • Ahsan MRU, Kim YR, Kim CH, et al. Porosity formation mechanisms in cold metal transfer (CMT) gas metal arc welding (GMAW) of zinc coated steels. Sci Technol Weld Joi. 2016;21(3):209–215.
  • Li XG, Lawson S, Zhou YN, et al. Novel technique for laser lap welding of zinc coated sheet steels. J Laser Appl. 2007;19(4):259–264.
  • Iqbal S, Gualini MMS, Rehman AU. Dual beam method for laser welding of galvanized steel: Experimentation and prospects. Opt Laser Technol. 2010;42(1):93–98.
  • Kam DH, Lee TH, Kim J. Porosity reduction through a Ti particle based gap-paste in arc welding of zinc coated steel. J Mater Process Tech. 2018;258:211–219.
  • Mei LF, Chen GY, Jin XZ, et al. Research on laser welding of high-strength galvanized automobile steel sheets. Opt Laser Eng. 2009;47(11):1117–1124.
  • Cazorla C. The role of density functional theory methods in the prediction of nanostructured gas-adsorbent materials. Coord Chem Rev. 2015;300:142–163.
  • Ke HB, Taylor CD. Density functional theory: an essential partner in the integrated computational materials engineering approach to corrosion. Corros. 2019;75(7):708–726.
  • Zhang YF, Zhang H, Zhu ZQ, et al. Microstructure, properties and first principles calculation of titanium alloy/steel by Nd: YAG laser self-fluxing welding. China Welding. 2018;27(03):5–14.
  • Peng Y, Zhou DW, Xu SH, et al. First-principles studies of the effects of microalloy elements on Fe/Al interface for laser lap welding of steel and aluminum. Rare Metal Mat Eng. 2012;41(9):302–306.
  • Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Mat. 2002;14(11):2717–2744.
  • Zhu YD, Yan MF, Zhang YX, et al. First-principles investigation of structural, mechanical and electronic properties for Cu–Ti intermetallics. Comp Mater Sci. 2016;123:70–78.
  • Pfrommer BG, Côté M, Louie SG, et al. Relaxation of crystals with the Quasi-Newton method. J Comput Phys. 1997;131(1):233–240.
  • Monkhorst HJ. Special points for Brillouin-zone integrations. Phys Rev B. 1977;16(4):1748–1749.
  • Shimizu S, Murakami Y, Kachi S. Lattice softening and martensitic transformation in Cu-Ni-Zn β phase alloys. J Phys Soc Jpn. 1976;41(1):79–84.
  • Yang Y, Li YZ, Lu H, et al. First-principles calculations of Zn substitutions in Cu6Sn5. Comp Mater Sci. 2012;65(35):490–493.
  • Nasch T, Jeitschko W. Niobium and molybdenum compounds with high zinc content: NbZn3, NbZn16, and MoZn20.44. J Solid State Chem. 1999;143(1):95–103.
  • Vold CL. IUCr. The structure of NbZn3. Acta Crystallogr. 1960;13(9):743–743.
  • Soyalp F, Yavuz M, Yalçln Z. Ab initio investigations of phonons and thermodynamic properties of ScZn and YZn in the B2 structure. Comp Mater Sci. 2013;77(Complete):72–80.
  • Fatima B, Sanyal SP. Ab initio study of electronic structure, elasticity, bonding features and mechanical behaviour of zinc intermetallics. Comput Condens Mat. 2018;14:144–152.
  • Sahu BR. Electronic structure and bonding of ultralight LiMg. Mater Sci Eng B-ADV. 1997;49(1):74–78.
  • Du J, Wen B, Melnik R, et al. Phase stability, elastic and electronic properties of Cu–Zr binary system intermetallic compounds: a first-principles study. J Alloy Compd. 2014;588:96–102.
  • Hou ZF. Elastic properties and electronic structures of antiperovskite-type InNCo3 and InNNi3. Solid State Commun. 2010;150(39-40):1874–1879.
  • Pugh SFXCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metal. Philos Mag. 1954;45(367):823–843.
  • Pettifor DG. Theoretical predictions of structure and related properties of intermetallics. Mater Sci Tech. 1992;8(4):345–349.
  • Djemia P, Benhamida M, Bouamama K, et al. Structural and elastic properties of ternary metal nitrides TixTa1-xN alloys: first-principles calculations versus experiments. Surf Coat Technol. 2013;215:199–208.
  • Shou HW, Peng MJ, Duan YH, et al. First-principles calculations of structure and electronic properties of aluminum doped by Ge, Sn and Pb. Physica B. 2018;547:6–11.
  • Ghosh G, Asta M. First-principles calculation of structural energetics of Al-TM(TM = Ti, Zr. Hf) Intermetallics. Acta Mater. 2005;53(11):3225–3252.
  • Nylen J, Garcia FJG, Mosel BD, et al. Structural relationships, phase stability and bonding of compounds PdSnn (n = 2,3,4). Solid State Sci. 2004;6(1):147–155.
  • Cheng HC, Yu CF, Chen WH. First-principles density functional calculation of mechanical, thermodynamic and electronic properties of CuIn and Cu2In crystals. J Alloy Compd. 2013;546(1):286–295.
  • Huang ZW, Zhao YH, Hou H, et al. Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations. Physica B. 2012;407(7):1075–1081.
  • Zhao YH, Sun J, Li JF. Effect of Cu on properties of FeCr laser cladding layer and machining vibration suppressing in side milling. Chinese J Lasers. 2015;42(3):1–9.
  • Stepanova N, Zimogliadova T, Ognev A, et al. Effect of copper on the structure and antifriction properties of cast hypoeutectoid steel. IOP Conf. Ser.: Mater Sci Eng. 2017;286:1–6.
  • Zhang LF, Xiong Y, Zhang Y, et al. Microstructure of high manganese steel by laser shock processing. Chinese J Lasers. 2011;38(6):226–229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.