399
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Modification of residual stress and microstructure in aluminium alloy by cryogenic treatment

, , , , &

References

  • Fan ST, Deng YL, Zhang Y, et al. Homogenization of 7050 plates by a novel differential temperature rolling. Mater Manuf Process. 2018;33:1822–1829. doi: 10.1080/10426914.2018.1476758
  • Song YF, Ding XF, Zhao XJ, et al. The effect of stress-aging on dimensional stability behavior of Al-Cu-Mg alloy. J Alloys Compd. 2017;718:298–303. doi: 10.1016/j.jallcom.2017.05.183
  • Araghchi M, Mansouri H, Vafaei R, et al. Optimization of the mechanical properties and residual stresses in 2024 aluminum alloy through heat treatment. J Mater Eng Perform. 2018;12:1–5.
  • Wu GH, Qiao J, Jiang LT. Research progress on principle of dimensional stability and stabilization design of Al and its composites. Acta Metall Sin. 2019;55:37–48.
  • Koç M, Culp J, Altan T. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes. J Mater Process Technol. 2006;174:342–354. doi: 10.1016/j.jmatprotec.2006.02.007
  • Li CM, Cheng NP, Chen ZQ, et al. Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy. Int J Min Met Mater. 2015;22:68–77. doi: 10.1007/s12613-015-1045-7
  • Barron RF. Cryogenic treatment of metals to improve wear resistance. Cryogenics (Guildf). 1982;22:409–413. doi: 10.1016/0011-2275(82)90085-6
  • Yong AYL, Seah KHW, Rahman M. Performance evaluation of cryogenically treated tungsten carbide tools in turning. Int J Mach Tool Manuf. 2006;46:2051–2056. doi: 10.1016/j.ijmachtools.2006.01.002
  • Senthilkumar D, Rajendran I, Pellizzari M, et al. Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel. J Mater Process Technol. 2011;211:396–401. doi: 10.1016/j.jmatprotec.2010.10.018
  • Li S, Zhao K, Wang K, et al. Microstructural evolution and thermal stability after aging of a cobalt-containing martensitic bearing steel. Mater Charact. 2017;124:154–164. doi: 10.1016/j.matchar.2016.12.023
  • Liu K, Chen XZ, Shen QK, et al. Microstructural evolution and mechanical properties of deep cryogenic treated Cu-Al-Si alloy fabricated by Cold Metal Transfer (CMT) process. Mater Charact. 2020 [cited 2020 May 8]; [18 p.]. doi: 10.1016/j.matchar.2019.110011
  • Gu KX, Zhao B, Weng ZJ, et al. Microstructure evolution in metastable β titanium alloy subjected to deep cryogenic treatment. Mater Sci Eng A. 2018;723:157–164. doi: 10.1016/j.msea.2018.03.003
  • Gu KX, Wang JJ, Zhou Y. Effect of cryogenic treatment on wear resistance of Ti–6Al–4 V alloy for biomedical applications. J Mech Behav Biomed Mater. 2014;30:131–139. doi: 10.1016/j.jmbbm.2013.11.003
  • Lados DA, Apelian D, Wang L. Minimization of residual stress in heat-treated Al-Si-Mg cast alloys using uphill quenching: mechanisms and effects on static and dynamic properties. Mater Sci Eng A. 2010;527:3159–3165. doi: 10.1016/j.msea.2010.01.064
  • Araghchi M, Mansouri H, Vafaei R, et al. A novel cryogenic treatment for reduction of residual stresses in 2024 aluminum alloy. Mater Sci Eng A. 2017;689:48–52. doi: 10.1016/j.msea.2017.01.095
  • Hong TR, Shen YW, Geng JW, et al. Effect of cryogenic pre-treatment on aging behavior of in-situ TiB2/Al–Cu–Mg composites. Mater Charact. 2016;119:40–46. doi: 10.1016/j.matchar.2016.07.012
  • Sun JQ, Ma Y, Gao C, et al. Comprehensive tensile properties improved by deep cryogenic treatment prior to aging in friction-stir-welded 2198 Al–Li alloy. Rare Met. 2019 [cited 2020 May 8]; [7 p.]. doi: 10.1007/s12598-019-01214-5
  • Araghchi M, Mansouri H, Vafaei R. Influence of cryogenic thermal treatment on mechanical properties of an Al–Cu–Mg alloy. Mater Sci Tech Lond. 2017;34:1–5.
  • Wierszyłłowski I, Niemczyk W. The influence of deep cryogenic treatment on precipitation phenomena during tempering and ageing. Defect Diffus Forum. 2009;283-286:65–73. doi: 10.4028/www.scientific.net/DDF.283-286.65
  • Gu KX, Wang KK, Chen LB, et al. Micro-plastic deformation behavior of Al-Zn-Mg-Cu alloy subjected to cryo-cycling treatment. Mater Sci Eng A. 2019;10:672–679. doi: 10.1016/j.msea.2018.05.033
  • Schajer GS. Measurement of non-uniform residual stresses using the hole-drilling method. Part I – stress calculation procedures. J Eng Mater T Asme. 1988;110:338–343. doi: 10.1115/1.3226059
  • Pan R, Pirling T, Zheng JH, et al. Quantification of thermal residual stresses relaxation in AA7xxx aluminium alloy through cold rolling. J Mater Process Tech. 2019;264:454–468. doi: 10.1016/j.jmatprotec.2018.09.034
  • Sonar T, Lomte S, Gogte C. Cryogenic treatment of metal – a review. Mater Today. 2018;5:25219–25228.
  • Weng ZJ, Gu KX, Wang KK, et al. The reinforcement role of deep cryogenic treatment on the strength and toughness of alloy structural steel. Mater Sci Eng A. 2020 [cited 2020 May 8]; [8 p.]. doi: 10.1016/j.msea.2019.138698
  • Li SH, Xiao MG, Ye GM, et al. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging. Mater Sci Eng A. 2018;732:167–177. doi: 10.1016/j.msea.2018.07.012
  • Gavriljuk VG, Theisen W, Sirosh VV, et al. Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Mater. 2013;61:1705–1715. doi: 10.1016/j.actamat.2012.11.045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.