438
Views
8
CrossRef citations to date
0
Altmetric
Reviews

The possible transition mechanism for the meta-stable phase in the 7xxx aluminium

, , , , , , , , , ORCID Icon & show all
Pages 1621-1627 | Received 29 May 2020, Accepted 04 Sep 2020, Published online: 18 Sep 2020

References

  • Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. 2014;56:862–871. doi: 10.1016/j.matdes.2013.12.002
  • Polmear IJ. Recent developments in light alloys. Mater Trans. 1996;37(1):12–31. doi: 10.2320/matertrans1989.37.12
  • Matsuda K, Kawai A, Watanabe K, et al. Extra electron diffraction spots caused by fine precipitates formed at the early stage of aging in Al-Mg-X (X = Si, Ge, Zn)-Cu alloys. Mater Trans. 2017;58(2):167–175. doi: 10.2320/matertrans.L-M2016839
  • Berg LK, Gjønnes J, Hansen V, et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging. Acta Mater. 2001;49(17):3443–3451. doi: 10.1016/S1359-6454(01)00251-8
  • Hansen V, Karlsen OB, Langsrud Y, et al. Precipitates, zones and transitions during aging of Al-Zn-Mg-Zr 7000 series alloy. Mater Sci Technol. 2004;20(2):185–193. doi: 10.1179/026708304225010424
  • Lervik A, Marioara CD, Kadanik M, et al. Precipitation in an extruded AA7003 aluminium alloy: observation of 6xxx-type hardening phases. Mater Des. 2020;186:108204. doi: 10.1016/j.matdes.2019.108204
  • Auld JH, Cousland SM. The structure of the metastable η’ phase in aluminium-zinc-magnesium alloys. J Aust Inst Met. 1974;19(3):194–199.
  • Wolverton C. Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys. Acta Mater. 2001;49(16):3129–3142. doi: 10.1016/S1359-6454(01)00229-4
  • Friauf JB. The crystal structure of magnesium di-zincide. Phys Rev. 1927;29:34–40. doi: 10.1103/PhysRev.29.34
  • Komura Y, Tokunaga K. Structural studies of stacking variants in Mg-base Friauf-Laves phases. Acta Cryst. 1980;B36:1548–1554. doi: 10.1107/S0567740880006565
  • Marioara CD, Lefebvre W, Andersen SJ, et al. Atomic structure of hardening precipitates in an Al-Mg-Zn-Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2. J Mater Sci. 2013;48:3638–3651. doi: 10.1007/s10853-013-7158-3
  • Gjønnes J, Simensen CHRJ. An electron microscope investigation of the microstructure in an aluminium-zinc-magnesium alloy. Acta Metall. 1970;18:194–199. doi: 10.1016/0001-6160(70)90016-7
  • Liu JZ, Chen JH, Yuan DW, et al. Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study part I: structure determination of the precipitates in AlZnMg(Cu) alloys. Mater Charact. 2015;99:277–286. doi: 10.1016/j.matchar.2014.11.028
  • Liu JZ, Chen JH, Liu ZR, et al. Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study part II: fine precipitation scenarios in AlZnMg(Cu) alloys. Mater Charact. 2015;99:142–149. doi: 10.1016/j.matchar.2014.11.027
  • Chung TF, Yang YL, Shiojiri M, et al. An atomic scale structural investigation of nanometer-sized η precipitates in the 7050 aluminium alloy. Acta Mater. 2019;174(1):351–368. doi: 10.1016/j.actamat.2019.05.041
  • Bendo A, Matsuda K, Lervik A, et al. An unreported precipitate orientation relationship in Al-Zn-Mg based alloy. Mater Charact. 2019;158:109958. doi: 10.1016/j.matchar.2019.109958
  • Preston GD. The diffraction of X-rays by age-hardening aluminium copper alloys. Proc Roy Soc A. 1938;167:526–538. doi: 10.1098/rspa.1938.0152
  • Hono K, Satoh T, Hirano K. Evidence of multi-layer GP zones in Al-1.7at.%Cu alloy. Phil Mag. 1986;53(4):495–504. doi: 10.1080/01418618608242848
  • Nishimura K, Matsuda K, Lee S, et al. Abnormally enhanced diamagnetism in Al-Zn-Mg alloys. J Alloy Compd. 2019;774:405–409. doi: 10.1016/j.jallcom.2018.10.037
  • Nishimura K, Matsuda K, Tsuchiya T, et al. Critical concentration of Zn and Mg for enhanced diamagnetism in Al-Zn-Mg alloys. AIP Adv. 2019;9:125111. doi: 10.1063/1.5126972
  • Ogura T, Hirosawa S, Cerezo A, et al. Atom probe tomography of nanoscale microstructures within precipitate free zones in Al-Zn-Mg-(Ag) alloys. Acta Mater. 2010;58(17):5714–5723. doi: 10.1016/j.actamat.2010.06.046
  • Hono K, Sano N, Sakurai T. Quantitative atom-probe analysis of some aluminum alloys. Surf Sci. 1992;266(1–3):350–357. doi: 10.1016/0039-6028(92)91045-D
  • Schmuck C, Auger P, Danoix F, et al. Quantitative analysis of GP zones formed at room temperature in a 7150 Al-based alloy. Appl Surf Sci. 1995;87–88:228–233. doi: 10.1016/0169-4332(94)00501-X
  • Maloney SK, Hono K, Polmear IJ, et al. The chemistry of precipitates in an aged Al-2.17Zn-1.7Mg at.% alloy. Scr Mater. 1999;41(10):1031–1038. doi: 10.1016/S1359-6462(99)00253-5
  • Williams DB, Carter CB. Transmission electron microscopy, part 3: imaging. New York: Springer; 2009.
  • Andersen SJ, Marioara CD, Friis J, et al. Precipitates in aluminium alloys. Adv Phys X. 2018;3(1):790–813.
  • Frank FC, Kasper JS. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Cryst. 1958;11:184–190. doi: 10.1107/S0365110X58000487
  • Frank FC, Kasper JS. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Cryst. 1959;12:483–499. doi: 10.1107/S0365110X59001499
  • Sinha AK. Topologically close-packed structures of transition metal alloys. Prog Mater Sci. 1972;15(2):81–185. doi: 10.1016/0079-6425(72)90002-3
  • Toda H, Oogo H, Uesugi K, et al. Role of pre-existing hydrogen micropores on ductile fracture. Mater Trans. 2009;50(9):2285–2290. doi: 10.2320/matertrans.M2009123
  • Tsuru T, Shimizu K, Yamaguchi M, et al. Hydrogen-accelerated spontaneous microcracking in high-strength aluminium alloys. Sci Rep. 2020;10:1998. doi: 10.1038/s41598-020-58834-6
  • Tsuru T, Yamaguchi M, Ebihara K, et al. First-principles study of hydrogen segregation at the MgZn2 precipitate in Al-Mg-Zn alloys. Comput Mater Sci. 2018;148:301–306. doi: 10.1016/j.commatsci.2018.03.009
  • Bendo A, Matsuda K, Lee S, et al. Microstructure evolution in a hydrogen charged and aged Al-Zn-Mg alloy. Materialia. 2018;3:50–56. doi: 10.1016/j.mtla.2018.09.035
  • Buha J, Lumley RN, Crosky AG. Secondary ageing in an aluminium alloy 7050. Mat Sci Eng A. 2008;492(1–2):1–10. doi: 10.1016/j.msea.2008.02.039
  • Li Y, Kovarik L, Philips PJ, et al. High-resolution characterization of the precipitation behavior of an Al-Zn-Mg-Cu alloy. Philos Mag Lett. 2012;92(4):166–178. doi: 10.1080/09500839.2011.652682
  • Bendo A, Maeda T, Matsuda K, et al. Characterisation of structural similarities of precipitates in Mg-Zn and Al-Zn-Mg alloy systems. Phil Mag. 2019;99(21):2619–2635. doi: 10.1080/14786435.2019.1637032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.