356
Views
24
CrossRef citations to date
0
Altmetric
Research Articles

Effect of TiB2 particle size on the material transfer behaviour of Cu–TiB2 composites

, , , &
Pages 1685-1694 | Received 17 Jul 2019, Accepted 04 Sep 2020, Published online: 21 Sep 2020

References

  • Gao X, Yue H, Guo E, et al. J Mater Sci Technol. 2018;34(6):648–653. doi: 10.1080/02670836.2017.1410354
  • Pellizzari M, Cipolloni G. Tribological behaviour of Cu based materials produced by mechanical milling/alloying and spark plasma sintering. Wear. 2017;376–377:958–967. doi: 10.1016/j.wear.2016.11.050
  • Jiang YH, Li D, Liang SH, et al. Phase selection of titanium boride in copper matrix composites during solidification. J Mater Sci. 2017;52(5):2957–2963. doi: 10.1007/s10853-016-0592-2
  • Ray N, Kempf B, Mützel T, et al. Effect of WC particle size and Ag volume fraction on electrical contact resistance and thermal conductivity of Ag–WC contact materials. Mater Des. 2015;85:412–422. doi: 10.1016/j.matdes.2015.07.006
  • Yih P, Chung DDL. J Mater Sci. 1997;32(7):1703–1709. doi: 10.1023/A:1018515714687
  • Li H, Wang X, Guo X, et al. Material transfer behavior of AgTiB2 and AgSnO2 electrical contact materials under different currents. Mater Des. 2017;114:139–148. doi: 10.1016/j.matdes.2016.10.056
  • Xianhui W, Hao Y, Shuhua L, et al. Effect of TiB2 particle size on erosion behavior of Ag-4wt% TiB2 composite. Rare Met Mater Eng. 2015;44(11):2612–2617. doi: 10.1016/S1875-5372(16)60004-8
  • Zou CL, Chen ZN, Kang HJ, et al. Wear. 2017;392:118–125. doi: 10.1016/j.wear.2017.09.016
  • Yu Z, Zhu H, Huang J, et al. Processing and characterization of in-situ ultrafine TiB2-Cu composites from Ti-B-Cu system. Powder Technol. 2017;320:66–72. doi: 10.1016/j.powtec.2017.07.036
  • Zhang P, Jie J, Li H, et al. Preparation and properties of TiB2 particles reinforced Cu–Cr matrix composite. Mater Sci Eng A. 2015;642(9):398–405. doi: 10.1016/j.msea.2015.07.021
  • Ziemnicka-Sylwester M. The Cu matrix cermets remarkably strengthened by TiB2 ‘in situ’ synthesized via self-propagating high temperature synthesis. Mater Des. 2014;53:758–765. doi: 10.1016/j.matdes.2013.07.092
  • Zou CL, Kang HJ, Wang W, et al. Effect of La addition on the particle characteristics, mechanical and electrical properties of in situ Cu-TiB2 composites. J Alloys Compd. 2016;687:312–319. doi: 10.1016/j.jallcom.2016.06.129
  • Guo X, Song K, Liang S, et al. Relationship between the MgOp/Cu interfacial bonding state and the arc erosion resistance of MgO/Cu composites. J Mater Res. 2017;32(19):3753–3760. doi: 10.1557/jmr.2017.321
  • Guo X, Song K, Liang S, et al. Effect of Al2O3 particle size on electrical wear performance of Al2O3/Cu composites. Tribol Trans. 2016;59(1):170–177. doi: 10.1080/10402004.2015.1061079
  • Guo X, Song K, Liang S, et al. Effect of the thermal expansion characteristics of reinforcements on the electrical wear performance of copper matrix composite. Tribol Trans. 2014;57(2):283–291. doi: 10.1080/10402004.2013.870271
  • Feng J, Song K, Liang S, et al. Electrical wear of TiB2 particle-reinforced Cu and Cu–Cr composites prepared by vacuum arc melting. Vacuum. 2020;175:109295. doi: 10.1016/j.vacuum.2020.109295
  • Long F, Guo X, Song K, et al. Enhanced arc erosion resistance of TiB2/Cu composites reinforced with the carbon nanotube network structure. Mater Des. 2019;183:108136. doi: 10.1016/j.matdes.2019.108136
  • Li S, Guo X, Zhang S, et al. Arc erosion behavior of TiB2/Cu composites with single-scale and dual-scale TiB2 particles. Nanotechnol Rev. 2019;8(1):619–627. doi: 10.1515/ntrev-2019-0054
  • Shorowordi KM, Laoui T, Haseeb ASMA, et al. Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. J Mater Process Technol. 2003;142(3):738–743. doi: 10.1016/S0924-0136(03)00815-X
  • Ibrahim IA, Mohamed FA, Lavernia EJ. Particulate reinforced metal matrix composites – a review. J Mater Sci. 1991;26(5):1137–1156. doi: 10.1007/BF00544448
  • Tatar C, Özdemir N. Investigation of thermal conductivity and microstructure of the α-Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC) by powder metallurgy method. Phys B. 2010;405(3):896–899. doi: 10.1016/j.physb.2009.10.010
  • Roig FS, Schoutens JE. Theory of electrical resistivity of metal-matrix composites at cryogenic and higher temperatures. J Mater Sci. 1986;21(7):2409–2417. doi: 10.1007/BF01114285
  • Rajkovic DBV, Popovic M, Jovanovic MT. The influence of powder particle size on properties of Cu-Al2O3 composites. Sci Sinter. 2009;41:185–192. doi: 10.2298/SOS0902185R
  • Chang S-Y, Chen C-F, Lin S-J, et al. Electrical resistivity of metal matrix composites. Acta Mater. 2003;51(20):6291–6302. doi: 10.1016/S1359-6454(03)00462-2
  • Solomon RR, Troxell JD, Nadkarni AV. GlidCop® DSC properties in the temperature range of 20–350°C. J Nucl Mater. 1996;233-237:542–546. doi: 10.1016/S0022-3115(96)00320-0
  • Zhang G-H, Jiang X-S, Shao Z-Y, et al. Microstructures and mechanical properties of alumina whisker reinforced copper matrix composites prepared by hot-pressing and hot isostatic pressing. Mater Res Express. 2019;6(11):116513. doi: 10.1088/2053-1591/ab43eb
  • Han K, Lu J, Toplosky V, et al. IEEE Trans Appl Supercond. 2020;30(4):1–5.
  • Wang X, Liang S, Yang P, et al. Effect of Al2O3 particle size on vacuum breakdown behavior of Al2O3/Cu composite. Vacuum. 2009;83(12):1475–1480. doi: 10.1016/j.vacuum.2009.06.049
  • Kubo S, Kato K. Effect of arc discharge on the wear rate and wear mode transition of a copper-impregnated metallized carbon contact strip sliding against a copper disk. Tribol Int. 1999;32(7):367–378. doi: 10.1016/S0301-679X(99)00062-6
  • Zhuan-Ke C, Sawa K. Effect of arc behaviour on material transfer: a review. IEEE Trans Compon, Packag Manuf Technol: A. 1998;21(2):310–322. doi: 10.1109/95.705480
  • Li HY, Wang XH, Liu YF, et al. Effect of strengthening phase on material transfer behavior of Ag-based contact materials under different voltages. Vacuum. 2017;135:55–65. doi: 10.1016/j.vacuum.2016.10.031
  • Braunovic M, Konchits VV, Myshkin NK. Electrical contacts: fundamentals, applications and technology. Boca Raton (FL): CRC Press; 2006, 47-65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.