170
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of carbon on the microstructure and element distribution in Ti42Al5Mn alloy

, , , , , , & show all
Pages 1883-1892 | Received 18 Nov 2019, Accepted 29 Oct 2020, Published online: 13 Nov 2020

References

  • Yamaguchi M. High temperature intermetallics – with particular emphasis on TiAl. Mater Sci Technol. 1992;8:299–307. https://doi.org/10.1179/mst.1992.8.4.299.
  • Kim Y, Kim S. Advances in gammalloy materials-processes-application technology: successes, dilemmas, and future. JOM. 2018;70:553–560. https://doi.org/10.1007/s11837-018-2747-x.
  • Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater. 2013;15:191–215. https://doi.org/10.1002/adem.201200231.
  • Schwaighofer E, Rashkova B, Clemens H, et al. Effect of carbon addition on solidification behavior, phase evolutionand creep properties of an intermetallic β-stabilized γ-TiAl based alloy. Intermetallics. 2014;46:173–184. https://doi.org/10.1016/j.intermet.2013.11.011.
  • Klein T, Schachermayer M, Mendez-Martin F, et al. Carbon distribution in multi-phase γ-TiAl based alloys and its influence on mechanical properties and phase formation. Acta Mater. 2015;94:205–213. https://doi.org/10.1016/j.actamat.2015.04.055.
  • Worth B, Jones J, Allison J. Creep deformation creep deformation in near-γTiAl: II. influence of carbon on in Ti-48Al-1V-0.3C. Metall Mater Trans A. 1995;26:2961–2972. https://doi.org/10.1007/BF02669652.
  • Tian W, Nemotob M. Effect of carbon addition on the microstructures and mechanical properties of γ-TiAl alloys. Intermetcllics. 1997;5:237–244. https://doi.org/10.1016/S0966-9795(96)00086-6.
  • Kim Y, Kim S. Effects of microstructure and C and Si additions on elevated temperature creep and fatigue of gamma TiAl alloys. Intermetallics. 2014;53:92–101. https://doi.org/10.1016/j.intermet.2014.04.006.
  • Karadge M, Gouma P, Kim Y. Precipitation strengthening in K5-series γ-TiAl alloyed with silicon and carbon. Metall Mater Trans A. 2003;34:2129–2138. https://doi.org/10.1007/s11661-003-0277-8.
  • Takeshi K, Masayoshi T, Osamu I. Effect of carbon and nitrogen on mechanical properties of TiAl alloys. ISIJ Int. 1991;31:1161–1167. https://doi.org/10.2355/isijinternational.31.1161.
  • Wang Q, Ding H, Zhang H, et al. Variations of microstructure and tensile property of γ-TiAl alloys with 0–0.5 at% C additives. Mater Sci Eng A. 2017;700:198–208. https://doi.org/10.1016/j.msea.2017.06.019.
  • Chlupová A, Heczko M, Obrtlík K, et al. Effect of heat-treatment on the microstructure and fatigue properties of lamellar γ-TiAl alloyed with Nb, Mo and/or C. Mater Sci Eng A. 2020;786:139427.
  • Whittenberger J, Ray R. Deformation properties of AlTi2C particle containing Ti-46Al-2Cr-2Nb alloys at 1000 to 1200 K. Scr Metall Mater. 1995;33:1505–1512. https://doi.org/10.1016/0956-716X(95)00431-T.
  • Park H, Nam S, Kim N, et al. Refinement of the lamellar structure in TiAl-based intermetallic compound by addition of carbon. Scr Mater. 1999;41:1197–1203. https://doi.org/10.1016/S1359-6462(99)00266-3.
  • Park H, Hwang S, Lee C, et al. Microstructural refinement and mechanical properties improvement of elemental powder metallurgy processed Ti-46.6Al-1.4Mn-2Mo alloy by carbon addition. Metall Mater Trans A. 2001;32:251–259. https://doi.org/10.1007/s11661-001-0256-x.
  • Li M, Xiao S, Chen Y, et al. The effect of carbon addition on the high-temperature properties of β solidification TiAl alloys. J Alloys Compd. 2019;775:441–448. https://doi.org/10.1016/j.jallcom.2018.09.397.
  • Fang H, Chen R, Gong X, et al. Effects of Nb on microstructure and mechanical properties of Ti42Al2.6C alloys. Adv Eng Mater. 2018;20:1701112. https://doi.org/10.1002/adem.201701112.
  • Menand A, Huguet A, Nérac-Partaix A. Interstitial solubility in γ and α2 phases of TiAl-based alloys. Acta Mater. 1996;44:4729–4737. https://doi.org/10.1016/S1359-6454(96)00111-5.
  • Menand A, Zapolsky-Tatarenko H, Nérac-Partaix A. Atom-probe investigations of TiAl alloys. Mater Sci Eng A. 1998;250:55–64. https://doi.org/10.1016/S0921-5093(98)00536-X.
  • Scheu C, Stergar E, Schober M, et al. High carbon solubility in a γ-TiAl-based Ti-45Al-5Nb-0.5C alloy and its effect on hardening. Acta Mater. 2009;57:1504–1511. https://doi.org/10.1016/j.actamat.2008.11.037.
  • Gerling R, Schimansky F, Stark A, et al. Microstructure and mechanical properties of Ti 45Al 5Nb+(0–0.5C) sheets. Intermetallics. 2008;16:689–697. https://doi.org/10.1016/j.intermet.2008.02.004.
  • Tetsui T, Shindo K, Kobayashi S, et al. A newly developed hot worked TiAl alloy for blades and structural components. Scr Mater. 2002;47:399–403. https://doi.org/10.1016/S1359-6462(02)00158-6.
  • Xu H, Li X, Xing W, et al. Processing map and hot working mechanism of as-cast Ti-42Al-5Mn alloy. Adv Eng Mater. 2018;20:1701059), https://doi.org/10.1002/adem.201701059.
  • Xu H, Li X, Xing X, et al. Phase transformation behavior of a Mn containing β-solidifying γ-TiAl alloy during continuous cooling. Intermetallics. 2018;99:51–58. https://doi.org/10.1016/j.intermet.2018.05.004.
  • Li X, Xu H, Xing W, et al. Phase transformation behavior of a β-solidifying γ-TiAl-based alloy from different phase regions with various cooling methods. Metals (Basel). 2018;8:731), https://doi.org/10.3390/met8090731.
  • Ye L, Wang H, Zhou G, et al. Phase stability of TiAlX (X=V, Nb, Ta, Cr, Mo, W, and Mn) alloys. J Alloys Compd. 2020;819:153291), https://doi.org/10.1016/j.jallcom.2019.153291.
  • Bandyopadhyay D, Sharma R, Chakraborti N. The Ti-Al-C system (titanium–aluminum–carbon). J Phase Equilib. 2000;21:195–198. https://doi.org/10.1361/105497100770340273.
  • Appel F, Oehring M, Wagner R. Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics. 2000;8:1283–1312. https://doi.org/10.1016/S0966-9795(00)00036-4.
  • Appel F, Paul J, Oehring M. Gamma titanium aluminide alloys: science and technology. Weinheim: Wiley-VCH; 2011; https://doi.org/10.1002/9783527636204.
  • Christoph U, Appel F, Wagner R. Dislocation dynamics in carbon-doped titanium aluminide alloys. Mater Sci Eng A. 1997;239-240:39–45. https://doi.org/10.1016/S0921-5093(97)00558-3.
  • Nemoto M, Tian W, Harada K, et al. Microstructure of precipitation strengthened Ni3Al and TiAl. Mater Sci Eng A. 1992;152:247–252.
  • Perdrix F, Trichet M, Bonnentien J, et al. Relationships between interstitial content, microstructure and mechanical properties in fully lamellar Ti-48Al alloys, with special reference to carbon. Intermetallics. 2001;9:807–815. https://doi.org/10.1016/S0966-9795(01)00066-8.
  • Liu Z, Lin J, Li S, et al. Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys. Intermetallics. 2002;10:653–659. https://doi.org/10.1016/S0966-9795(02)00037-7.
  • Song Y, Yang R, Li D, et al. A first principles study of the influence of alloying elements on TiAl: site preference. Intermetallics. 2000;8:563–568. https://doi.org/10.1016/S0966-9795(99)00164-8.
  • Rossouw C, Forwood C, Gibson M, et al. Zone-axis convergent-beam electron diffraction and ALCHEMI analysis of Ti[sbnd]Al alloys with ternary additions. Phil Mag A. 1996;74:77–102. https://doi.org/10.1080/01418619608239691.
  • Kastenhuber M, Klein T, Clemens H, et al. Tailoring microstructure and chemical composition of advanced γ-TiAl based alloys for improved creep resistance. Intermetallics. 2018;97:27–33. https://doi.org/10.1016/j.intermet.2018.03.011.
  • Wu Z, Hu R, Zhang T, et al. Understanding the role of carbon atoms on microstructure and phase transformation of high Nb containing TiAl alloys. Mater Charact. 2017;124:1–7. https://doi.org/10.1016/j.matchar.2016.12.008.
  • Chen S, Beaven P, Wagner R. Carbide precipitation in γ-TiAl alloys. Scr Metall Mater. 1992;26:1205–1210. https://doi.org/10.1016/0956-716X(92)90564-U.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.