199
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Mechanical properties enhancement of Mg–4Si in-situ composites by friction stir processing

ORCID Icon &
Pages 66-77 | Received 06 Sep 2020, Accepted 16 Dec 2020, Published online: 07 Jan 2021

References

  • Song J, She J, Chen D, et al. Latest research advances on magnesium and magnesium alloys worldwide. J Magnes Alloy. 2020;8(1):1–41.
  • Ramalingam VV, Ramasamy P, Kovukkal MD, et al. Research and development in magnesium alloys for industrial and biomedical applications: a review. Met Mater Int. 2020;26:409–430.
  • Guo EJ, Ma BX, Wang LP. Modification of Mg2Si morphology in Mg–Si alloys with Bi. J Mater Process Technol. 2008;206(1–3):161–166.
  • Ye HZ, Liu XY. Review of recent studies in magnesium matrix composites. J Mater Sci. 2004;39(20):6153–6171.
  • Govindaraju M, Rao KP, Uday C, et al. Friction stir processed Rare Earth containing Magnesium alloy for high temperature Application. Mater Sci Forum. 2012;710:235–240.
  • Pekguleryuz MO, Luo AA. Creep resistant magnesium alloys for die casting. WO 96/25529. Institute De La Technologie Du Magnesium;1996 Aug 22.
  • Polmer IJ. Light alloys. 2nd ed. New York (NY): Arnold; 1989.
  • Von Buch F, Lietzau J, Mordike BL, et al. Development of Mg–Sc–Mn alloys. Mater Sci Eng A. 1999;263(1):1–7.
  • King JF. Development of practical high temperature magnesium casting alloys, magnesium alloys and their applications. In: Mordike BL, Kainer KU, editors. Weinheim: Wiley-VCH; 2000. p. 14–22.
  • Russell A, Lee KL. Structure property relations in nonferrous metals.. NewYork: Wiley; 2005.
  • Mabuchi M, Kubota K, Higashi K. High strength and high strain rate superplasticity in a Mg-Mg2Si composite. Scr Metall Mater. 1995;33(2):331–335.
  • Pan Y, Liu X, Yang H. Microstructural formation in a hypereutectic Mg–Si alloy. Mater Charact. 2005;55(3):241–247.
  • Razaghian A, Bahrami A, Emamy M. The influence of Li on the tensile properties of extruded in situ Al–15%Mg2Si composite. Mater Sci Eng A. 2012;532:346–353.
  • Seth PP, Parkash O, Kumar D. Structure and mechanical behavior of in situ developed Mg2Si phase in magnesium and aluminum alloys – a review. RSC Adv. 2020;10(61):37327–37345.
  • Li A, Zhao X, Huang H, et al. Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping. Int J Miner Metall. 2019;26(4):507–515.
  • Chen L, Wang HY, Li YJ, et al. Morphology and size control of octahedral and cubic primary Mg2Si in an Mg–Si system by regulating Sr contents. Cryst Eng Comm. 2014;16(3):448–454.
  • Hadian R, Emamy M, Campbell J. Modification of cast Al-Mg2Si metal matrix composite by Li. Metall Mater Trans B. 2009;40:822.
  • Mirshahi F, Meratian M. High temperature tensile properties of modified Mg/Mg2Si in situ composite. Mater Des. 2012;33:557–562.
  • Lotfpour M, Emamy M, Allameh SH. Effect of Hot extrusion on microstructure and tensile properties of Ca modified Mg-Mg2Si composite. Proc Mater Sci. 2015;11:38–43.
  • Guo W, Wang QD, Ye B, et al. Microstructure and mechanical properties of AZ31–Mg2Si in situ composite fabricated by repetitive upsetting. Trans Nonferrous Met Soc. 2014;24(12):3755–3761.
  • Gan WM, Wu K, Zheng MY, et al. Microstructure and mechanical property of the ECAPed Mg2Si/Mg composite. Mater Sci Eng A. 2009;516(1–2):283–289.
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50(1–2):1–78.
  • Ma ZY. Friction stir processing technology: a review. Metall Mater Trans A. 2008;39(3):642–658.
  • Raeissi M, Nourbaksh SH. Enhancement of the micro-structure homogeneity and mechanical performance of the As-cast Mg/Mg2Si in-situ composite through friction stir processing. Mater Res Express. 2019;6(10):1065e7.
  • Taylor RP, McClain ST, Berry JT. Uncertainty analysis of metal-casting porosity measurements using Archimedes’ principle. Int J Cast Metals Res. 1999;11:247–257.
  • Li C, Wu YY, Li H, et al. Morphological evolution and growth mechanism of primary Mg2Si phase in Al–Mg2Si alloys. Acta Mater. 2019;59(3):1058–1067.
  • Chen L, Wang HY, Luo D, et al. Synthesis of octahedron and truncated octahedron primary Mg2Si by controlling the Sb contents. Cryst Eng Comm. 2013;15(9):1787.
  • Okamoto H. Mg-Si (magnesium-silicon). J Phs Eqil and Diff. 2007;28:229–230.
  • Peters AT. Degassing magnesium-base alloy: US Patent US3123467. 1964–03–03.
  • Shevidi AH, Taghiabadi R, Razaghian A. Weibull analysis of effect of T6 heat treatment on fracture strength of AM60B magnesium alloy. Trans Nonferrous Met Soc China. 2018;28:20–29.
  • Moharami A, Razaghian A, Babaei B, et al. Role of Mg2Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al-Mg2Si composite. J Compos Mater. 2020;54(26):4035–4057.
  • Schwartz AJ, Kumar M, Adams BL. Electron backscatter diffraction in materials Science. Boston (MA): Springer; 2009. DOI:10.1007/978-0-387-88136-2
  • Mosayebi M, Zarei-Hanzaki A, Abedi HR, et al. The correlation between the recrystallization texture and subsequent isothermal grain growth in a friction stir processed rare earth containing magnesium alloy. Mater Charact. 2020;163:110236.
  • Wang W, Han P, Peng P, et al. Friction stir processing of magnesium alloys: a review. Acta Metall Sin Engl Lett. 2019;33(1):43–57.
  • Mansoor B, Ghosh AK. Microstructure and tensile behavior of a friction stir processed magnesium alloy. Acta Mater. 2012;60(13–14):5079–5088.
  • Moharrami A, Razaghian A, Paidar M, et al. Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing. Mater Chem Phys. 2020;250:123066.
  • Moharami A, Razaghian A. Corrosion behaviour of friction stir processed Al–Mg2Si composites. Mater Sci Technol. 2020. DOI:10.1080/02670836.2020.1852515
  • Rao AG, Katkar VA, Gunasekaran G, et al. Effect of multipass friction stir processing on corrosion resistance of hypereutectic Al-30Si alloy. Corros Sci. 2014;83:198–208.
  • Sharma V, Prakash U, Kumar BVM. Surface composites by friction stir processing: a review. J Mater Proc Technol. 2015;224:117–134.
  • Huang KT, Lui TS, Chen LH. Effect of dynamically recrystallized grain size on the tensile properties and vibration fracture resistance of friction stirred 5052 alloy. Mater Trans. 2006;47:2405–2412.
  • Soustani MF, Taghiabadi R, Jafarzadegan M, et al. Effect of multi-pass friction stir processing on microstructure and mechanical properties of cast Al-7Fe-5Ni alloy. Mater Res Express. 2019;6(10):106571.
  • Wu Y, Peng L, Zheng F, et al. Microstructure modification and performance improvement of Mr-RE alloys by friction stir processing, magnesium technology 2013. Miner Met Mater Soc. 2016. DOI:10.1007/978-3-319-48150-0_31
  • Sunil BR, Kumar Reddy GP, Patle H, et al. Magnesium based surface metal matrix composites by friction stir processing. J Magnes Alloy. 2016;4(1):52–61.
  • Taghiabadi R, Aria N. Statistical strength analysis of Dissimilar AA2024-T6 and AA6061-T6 friction stir Welded Joints. J Mater Eng Perform. 2019;28(3):1822–1832.
  • Mabuchi M, Kubota K, Higashi K. Tensile strength, ductility and fracture of magnesium-silicon alloys. J. Mater. Sci. 1996;31:1529–1535.
  • Farahany S, Ghandvar H, Nordin N, et al. Effect of primary and eutectic Mg2Si crystal modifications on the mechanical properties and sliding wear behavior of an Al–20Mg2Si–2Cu–xBi composite. J Mater Sci Technol. 2016;32(11):1083–1097.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.