435
Views
2
CrossRef citations to date
0
Altmetric
Review

Powder metallurgy processed TiB2-reinforced steel matrix composites: a review

, &
Pages 1153-1173 | Received 02 Jul 2021, Accepted 18 Sep 2021, Published online: 18 Oct 2021

References

  • Singh L. Latest developments in composite materials. IOSR J Eng. 2012;02:152–158.
  • Oke SR, Ige OO, Falodun OE, et al. Powder metallurgy of stainless steels and composites: a review of mechanical alloying and spark plasma sintering. Int J Adv Manuf Technol. 2019;102:3271–3290.
  • Embury D, Bouaziz O. Steel-based composites: driving forces and classifications. Annu Rev Mater Res. 2010;40:213–241.
  • Markgraaff J. Overview of new developments in composite materials for industrial and mining applications. J South African Inst Min Metall. 1996;96:55–65.
  • Zhang N, Qiang Y, Zhang C, et al. Microstructure and property of WC/steel matrix composites. Emerg Mater Res. 2015;4:149–156.
  • Rajak DK, Pagar DD, Kumar R, et al. Recent progress of reinforcement materials: a comprehensive overview of composite materials. J Mater Res Technol. 2019;8:6354–6374.
  • Rana R. Low-density steels. JOM. 2014;66:1730–1733.
  • Rana R, Lahaye C, Ray RK. Overview of lightweight ferrous materials: strategies and promises. JOM. 2014;66:1734–1746.
  • Srivastava AK, Das K. Corrosion behaviour of TiC-reinforced Hadfield manganese austenitic steel matrix in-situ composites. Open J Met. 2015;05:11–17.
  • Akhtar F. Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites. J Alloys Compd. 2008;459:491–497.
  • Bonnet F, Daeschler V, Petitgand G. High modulus steels: new requirement of automotive market. How to take up challenge? Can Metall Q. 2014;53:243–252.
  • Srinivasa K, Prajwal AS, Parashivamurthy KI, et al. Review on Fe-TiC composites for industries. Int Res J Eng Technol. 2016;03:394–405.
  • Das K, Bandyopadhyay TK, Das S. A review on the various synthesis routes of TiC reinforced ferrous based composites. J Mater Sci. 2002;37:3881–3892.
  • Wu CL, Zhang S, Zhang CH, et al. Effects of SiC content on phase evolution and corrosion behavior of SiC-reinforced 316L stainless steel matrix composites by laser melting deposition. Opt Laser Technol. 2019;115:134–139.
  • Li J, Zong BY, Wang YM, et al. Experiment and modeling of mechanical properties on iron matrix composites reinforced by different types of ceramic particles. Mater Sci Eng A. 2010;527:7545–7551.
  • Rana R. High modulus steels. Can Metall Q. 2014;53:241–242.
  • Xie G. Powder metallurgy & mining spark plasma sintering: a useful technique to develop large-sized bulk metallic glasses. J Powder Metall Min. 2013;2:2–4.
  • Wang XH, Song SL, Zou ZD, et al. Fabricating TiC particles reinforced Fe-based composite coatings produced by GTAW multi-layers melting process. Mater Sci Eng A. 2006;441:60–67.
  • Velascon F, Anton N, Torralbam JM, et al. Sinterability of Y2O3-Al2O3 particulate stainless steel matrix composites. Appl Compos Mater. 1996;3:15–27.
  • Farid A, Shiju G. Development of Si3N4/Al composite by pressureless melt infiltration. Euro PM 2005 Powder Metall Congr Exhib., Vol. 2; 2005. p. 271–278.
  • Farid A, Guo SJ, Shah JA, et al. Effect of adding a type of binder phase on the microstructure, properties and heat treatment of steel bonded TiC cermets. Mater Sci Forum. 2007;534–536:1161–1164.
  • Jain J, Kar AM, Upadhyaya A. Effect of YAG addition on sintering of P/M 316L and 434L stainless steels. Mater Lett. 2004;58:2037–2040.
  • Patankar SN, Tan MJ. Role of reinforcement in sintering of SiC/316L stainless steel composite. Powder Metall. 2000;43:350–352.
  • Kleme SA, Reponen PK, Liimatainen J, et al. Abrasive wear properties of tool steel matrix composites in rubber wheel abrasion test and laboratory cone crusher experiments. Wear. 2007;263:180–187.
  • Hu Z, Ning K, Lu K. Study of spark plasma sintered nanostructured ferritic steel alloy with silicon carbide addition. Mater Sci Eng A. 2016;670:75–80.
  • Chakthin S, Poolthong N, Thavarungkul N, et al. Iron-carbide composites prepared by P/M. Third International Conference: Processing Materials for Properties; 2009. p. 577–584.
  • Parashivamurthy KI, Kumar RK, Seetharamu S, et al. Review on TiC reinforced steel composites. J Mater Sci. 2001;36:4519–4530.
  • Berns H, Wewers B. Development of an abrasion resistant steel composite with in situ TiC particles. Wear. 2001;251:1386–1395.
  • Kattamis TZ, Suganuma T. Solidification processing and tribological behavior of particulate TiC-ferrous matrix composites. Mater Sci Eng A. 1990;128:241–252.
  • Persson P, Jarfors AEW, Savage S. Self-propagating high-temperature synthesis and liquid-phase sintering of TiC/Fe composites. J Mater Process Technol. 2002;127:131–139.
  • Li B, Liu Y, Cao H, et al. Rapid fabrication of in situ TiC particulates reinforced Fe-based composites by spark plasma sintering. Mater Lett. 2009;63:2010–2012.
  • Parashivamurthy KI, Chandrasekharaiah MN, Sampathkumaran P, et al. Casting of TiC-reinforced steel matrix composite. Mater Manuf Process. 2006;21:473–478.
  • Feng K, Yang Y, Shen B, et al. In situ synthesis of TiC/Fe composites by reaction casting. Mater Des. 2005;26:37–40.
  • Gowtam DS, Ziyauddin M, Mohape M, et al. In situ TiC-reinforced austenitic steel composite by self-propagating high temperature synthesis. Int J Self-Propag High-Temp Synth. 2007;16:70–78.
  • Szewczyk-nykiel A. The microstructure and properties of titanium carbide reinforced stainless steel matrix composites prepared by powder metallurgy. Tech Trans. 2018;7:191–206.
  • Razavi M, Yaghmaee MS, Rahimipour MR, et al. The effect of production method on properties of Fe-TiC composite. Int J Miner Process. 2010;94:97–100.
  • Galgali RK, Ray HS, Chakrabarti AK. Preparation of TiC reinforced steel composites and their characterisation. Mater Sci Technol. 1999;15:437–442.
  • Das K, Bandyopadhyay TK, Chatterjee S. Synthesis and characterization of austenitic steel matrix composite reinforced with in-situ TiC particles. J Mater Sci. 2005;40:5007–5010.
  • Sharifitabar M, Vahdati Khaki J, Haddad Sabzevar M. Effects of Fe additions on self propagating high temperature synthesis characteristics of TiO2-Al-C system. Int J Refract Met Hard Mater. 2014;47:93–101.
  • Pagounis E, Talvitie M, Lindroos VK. Influence of reinforcement volume fraction and size on the microstructure and abrasion wear resistance of hot isostatic pressed white iron matrix composites. Metall Mater Trans A. 1996;27:4171–4181.
  • Terry BS, Chinyamakobvu OS. In situ production of Fe-TiC composites by reactions in liquid iron alloys. J Mater Sci Lett. 1991;10:628–629.
  • Akhtar F, Guo SJ. Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites. Mater Charact. 2008;59:84–90.
  • Kübarsepp J, Klaasen H, Pirso J. Behaviour of TiC-base cermets in different wear conditions. Wear. 2001;249:229–234.
  • Doan ÖN, Hawk JA, Tylczak JH. Wear of cast chromium steels with TiC reinforcement. Wear. 2001;250:462–469.
  • Tongsri R, Metal N. Iron-carbide composites prepared by P/M iron-carbide composites prepared by P/M. Third International Conference: Processing Materials for Properties; 2015. p. 577–582.
  • Pelleg J. Reactions in the matrix and interface of the Fe-SiC metal matrix composite system. Mater Sci Eng A. 1999;269:225–241.
  • Song YP, Yu H, He JG, et al. Elevated temperature sliding wear behavior of WCP-reinforced ferrous matrix composites. J Mater Sci. 2008;43:7115–7120.
  • Zhang GS, Xing JD, Gao YM. Impact wear resistance of WC/Hadfield steel composite and its interfacial characteristics. Wear. 2006;260:728–734.
  • Terry BS, Chinyamakobvu O. Carbothermic reduction of ilmenite and rutile as means of production of iron based Ti(O,C) metal matrix composites. Mater Sci Technol. 1991;7:842–848.
  • Lou D, Hellman J, Luhulima D, et al. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites. Mater Sci Eng A. 2003;340:155–162.
  • Ala-kleme S, Kivikytö-Reponen P, Liimatainen J, et al. Abrasive wear properties of metal matrix composites produced by hot isostatic pressing. Proc Estonian Acad Sci Eng. 2006;12:445–454.
  • Ward-Close CM, Minor R, Doorbarb PJ. Intermetallic-matrix composites—a review. Intermetallics. 1996;4:217–229.
  • Seshadri R, Rao BD, Narayanaswamy V, et al. Design and fabrication of a laboratory model uniaxial hot press. Proceeding of the national conference on high pressure science and technology; 1994; p. 393–399.
  • Sustarsic B, Jenko M, Godec M, et al. Microstructural investigation of NbC-doped vacuum-sintered tool-steel-based composites. Vacuum. 2003;71:77–82.
  • Gordo E, Velasco F, Antón N, et al. Wear mechanisms in high speed steel reinforced with (NbC)p and (TaC)p MMCs. Wear. 2000;239:251–259.
  • Pagounis E, Lindroos VK. Development and performance of new hard and wear-resistant engineering materials. J Mater Eng Perform. 1997;6:749–756.
  • Pagounis E, Lindroos VK. Processing and properties of particulate reinforced steel matrix composites. Mater Sci Eng A. 1998;246:221–234.
  • Pagounis E, Talvitie M, Lindroos VK. Influence of matrix structure on the abrasion wear resistance and toughness of a hot isostatic pressed white iron matrix composite. Metall Mater Trans A. 1996;27:4183–4191.
  • Das K, Bandyopadhyay TK. Synthesis and characterization of zirconium carbide-reinforced iron-based composite. Mater Sci Eng A. 2004;379:83–91.
  • Velasco F, Antón N, Torralba JM, et al. Mechanical and corrosion behaviour of powder metallurgy stainless steel based metal matrix composites. Mater Sci Technol. 1997;13:847–851.
  • Petersen K, Pedersen AS, Pryds N, et al. The effect of particles in different sizes on the mechanical properties of spray formed steel composites. Mater Sci Eng A. 2002;326:40–50.
  • Schneibel JH, Shim S. Nano-scale oxide dispersoids by internal oxidation of Fe-Ti-Y intermetallics. Mater Sci Eng A. 2008;488:134–138.
  • Oliveira MM, Bolton JD. High-speed steels: increasing wear resistance by adding ceramic particles. J Mater Process Technol. 1999;92–93:15–20.
  • Anal A, Bandyopadhyay TK, Das K. Synthesis and characterization of TiB2-reinforced iron-based composites. J Mater Process Technol. 2006;172:70–76.
  • Gai L, Ziemnicka-Sylwester M. The TiB2-based Fe-matrix composites fabricated using elemental powders in one step process by means of SHS combined with pseudo-HIP. Int J Refract Met Hard Mater. 2014;45:141–146.
  • Sulima I, Jaworska L, Figiel P. Influence of processing parameters and different content of TiB2 ceramics on the properties of composites sintered by high pressure-high temperature (HP-HT) method. Arch Metall Mater. 2014;59:205–209.
  • Fedrizzi A, Pellizzari M, Zadra M, et al. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB2 particles. Mater Charact. 2013;86:69–79.
  • Farid A, Guo S, Yang X, et al. Stainless steel binder for the development of novel TiC-reinforced steel cermets. J Univ Sci Technol Beijing Miner Metall Mater. 2006;13:546–550.
  • Farid A, Guo S, Cui Fe, et al. TiB2 and TiC stainless steel matrix composites. Mater Lett. 2007;61:189–191.
  • Sabahi Namini A, Azadbeh M. Microstructural characterisation and mechanical properties of spark plasma-sintered TiB2-reinforced titanium matrix composite. Powder Metall. 2017;60:22–32.
  • Kurgan N. Effect of porosity and density on the mechanical and microstructural properties of sintered 316L stainless steel implant materials. Mater Des. 2014;55:235–241.
  • Ashby MF. Materials selection in mechanical design. 2nd ed. Oxford (OX): Butterworth-Heinemann; 1999, p. 4.
  • Zavareh MA, Aly A, Mohammed D, et al. Tic–TiB2 composites: a review of processing, properties and applications. Int J Innov Res Sci Eng. 2014;27:2347–3207.
  • Maleque MA, Dyuti S, Rahman MM. Material selection method in design of automotive brake disc. WCE 2010 - World Congr Eng., Vol. 3; 2010. p. 2322–2326.
  • Chen S, Seda P, Krugla M, et al. High-modulus steels reinforced with ceramic particles through ingot casting process. Mater Sci Technol. 2016;32:992–1003.
  • Huang MX, He BB, Wang X, et al. Interfacial plasticity of a TiB2-reinforced steel matrix composite fabricated by eutectic solidification. Scr Mater. 2015;99:13–16.
  • Yao T, Wang Y, Li H, et al. A universal trend of structural, mechanical and electronic properties in transition metal (M=V, Nb, and Ta) borides: first-principle calculations. Comput Mater Sci. 2012;65:302–308.
  • Qi C, Jiang Y, Liu Y, et al. Elastic and electronic properties of XB2 (X=V, Nb, Ta, Cr, Mo, and W) with AlB2 structure from first principles calculations. Ceram Int. 2014;40:5843–5851.
  • Duan YH, Sun Y, Guo ZZ, et al. Elastic constants of AlB2-type compounds from first-principles calculations. Comput Mater Sci. 2012;51:112–116.
  • Hong CQ, Han JC, Zhang XH, et al. High-strength porous titanium diboride ceramics: microstructure and mechanical properties. Proc Inst Mech Eng Part G: J Aerosp Eng. 2008;222:933–938.
  • Holleck H. Material selection for hard coatings. J Vac Sci Technol A. 1986;4:2661–2669.
  • Tanaka K, Saito T. Phase equilibria in TiB2-reinforced high modulus steel. J Phase Equilibria. 1999;20:207–214.
  • Degnan CC, Shipway PH. A comparison of the reciprocating sliding wear behaviour of steel based metal matrix composites processed from self-propagating high-temperature synthesised Fe-TiC and Fe-TiB2 masteralloys. Wear. 2002;252:832–841.
  • Wang HY, Jiang QC, Ma BX, et al. Fabrication of steel matrix composite locally reinforced with in situ TiB2 particulate using self-propagating high-temperature synthesis reaction of Ni-Ti-B system during casting. Adv Eng Mater. 2005;7:58–63.
  • Vani VV, Chak SK. The effect of process parameters in aluminum metal matrix composites with powder metallurgy. Manuf Rev. 2018;5:1–13.
  • Bains PS, Sidhu SS, Payal HS. Fabrication and machining of metal matrix composites: a review. Mater Manuf Process. 2016;31:553–573.
  • Mistry JM, Gohil PP. Research review of diversified reinforcement on aluminum metal matrix composites: fabrication processes and mechanical characterization. Sci Eng Compos Mater. 2018;25:633–647.
  • Ravi Prakash M, Saravanan R, Nagaral M. Fabrication and wear behavior of particulate reinforced metal matrix composites - an overview. IOSR J Mech Civ Eng. 2017;14:10–20.
  • Tjong SC, Lau KC. Sliding wear of stainless steel matrix composite reinforced with TiB2 particles. Mater Lett. 1999;41:153–158.
  • Tjong SC, Lau KC. Abrasion resistance of stainless-steel composites reinforced with hard TiB2 particles. Compos Sci Technol. 2000;60:1141–1146.
  • Nahme H, Lach E, Tarrant A. Mechanical property under high dynamic loading and microstructure evaluation of a TiB2 particle-reinforced stainless steel. J Mater Sci. 2009;44:463–468.
  • Saheb N, Iqbal Z, Khalil A, et al. Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater. 2012;2012:1–13.
  • Sulima I, Putyra P, Hyjek P, et al. Effect of SPS parameters on densification and properties of steel matrix composites. Adv Powder Technol. 2015;26:1152–1161.
  • Li BH, Liu Y, Li J, et al. Fabrication of in situ TiB2–TiC reinforced steel matrix composites by spark plasma sintering. Powder Metall. 2011;54:222–224.
  • Purohit RSRR, Das S. Review of recent studies in Al matrix composites. Int J Sci Eng Res. 2012;3:1–14.
  • Lee HS, Jeon KY, Kim HY, et al. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications. J Mater Sci. 2000;35:6231–6236.
  • Akhtar F, Hasan F. Reactive sintering and properties of TiB2 and TiC porous cermets. Mater Lett. 2008;62:1242–1245.
  • Pagounis E, Talvitie M, Lindroos VK Microstructure and mechanical properties of hot work tool steel matrix composites produced by hot isostatic pressing. Powder Metall. 1997;40:55–61.
  • Szewczyk-nykiel A. The effect of the addition of boron on the densification, microstructure and properties of sintered 17-4 PH stainless steel. Tech Trans. 2014;2-M:85–96.
  • Sahoo S, Jha BB, Sahoo TK, et al. Influence of reinforcement and processing on steel-based composites: microstructure and mechanical response. Mater Manuf Process. 2018;33:564–571.
  • Zavareh M, Sarhan A, Roudan M, et al. TiC–TiB2 composites: a review of processing, properties and applications. Int J Innov Res Sci Eng. 2014;27:2347–3207.
  • He S, Fan X, Chang Q, et al. TiC-Fe-based composite coating prepared by self-propagating high-temperature synthesis. Metall Mater Trans B. 2017;48:1748–1753.
  • Baron C, Springer H, Raabe D. Development of high modulus steels based on the Fe–Cr–B system. Mater Sci Eng A. 2018;724:142–147.
  • Rana R, Liu C, et al. Effects of ceramic particles and composition on elastic modulus of low density steels for automotive applications. Can Metall Q. 2014;53:300–316.
  • Springer H, Fernandez RA, Duarte MJ, et al. Microstructure refinement for high modulus in-situ metal matrix composite steels via controlled solidification of the system Fe–TiB2. Acta Mater. 2015;96:47–56.
  • Lartigue-korinek S, Walls M, Haneche N, et al. Interfaces and defects in a successfully hot-rolled steel-based composite Fe–TiB2. Acta Mater. 2015;98:297–305.
  • feng YY, yuan WH, hong LY, et al. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2 particulates using SHS reactions of Ni-Ti-B4C and Ni-Ti-B4C-C systems during casting. Mater Sci Eng A. 2007;445–446:398–404.
  • Yu YH, Wang T, Liao QP, et al. Low-temperature solid-state synthesis of nanometer TiB2-TiC composite powder. J Inorg Mater. 2016;31:324–328.
  • Lepakova OK, Raskolenko LG, Maksimov YM. Self-propagating high-temperature synthesis of composite material TiB2-Fe. J Mater Sci. 2004;39:3723–3732.
  • Degnan CC, Shipway PH. The incorporation of self-propagating, high-temperature synthesis-formed Fe-TiB2 into ferrous melts. Metall Mater Trans A. 2002;33:2973–2983.
  • Wang Y, Zhang ZQ, Wang HY, et al. Effect of Fe content in Fe-Ti-B system on fabricating TiB2 particulate locally reinforced steel matrix composites. Mater Sci Eng A. 2006;422:339–345.
  • Yang YF, Wang HY, Zhao RY, et al. In situ TiC/TiB2 particulate locally reinforced steel matrix composites fabricated Via the SHS reaction of Ni-Ti-B4C system. Int J Appl Ceram Technol. 2009;6:437–446.
  • Yang YF, Wang HY, Liang YH, et al. Effect of C particle size on the porous formation of TiC particulate locally reinforced steel matrix composites via the SHS reaction of Ni-Ti-C system during casting. Mater Sci Eng A. 2008;474:355–362.
  • Jiang QC, Ma BX, Wang HY, et al. Fabrication of steel matrix composites locally reinforced with in situ TiB2-TiC particulates using self-propagating high-temperature synthesis reaction of Al-Ti-B4C system during casting. Compos Part A. 2006;37:133–138.
  • Zhang Z, Shen P, Wang Y, et al. Fabrication of TiC and TiB2 locally reinforced steel matrix composites using a Fe-Ti-B4C-C system by an SHS-casting route. J Mater Sci. 2007;42:8350–8356.
  • Zou B, Shen P, Cao X, et al. The mechanism of thermal explosion (TE) synthesis of TiC-TiB2 particulate locally reinforced steel matrix composites from an Al-Ti-B4C system via a TE-casting route. Mater Chem Phys. 2012;132:51–62.
  • Chen S, Zhao Z, Huang X, et al. Interfacial microstructure and mechanical properties of laminated composites of TiB2-based ceramic and 42CrMo alloy steel. Mater Sci Eng A. 2016;674:335–342.
  • Khoa HX, Tuan NQ, Lee YH, et al. Fabrication of Fe-TiB2 composite powder by high-energy milling and subsequent reaction synthesis. J Korean Powder Metall Inst. 2013;20:221–227.
  • Huynh XK, Kim BW, Kim JS. Effect of mechanical activation on the in situ formation of TiB2 particulates in the powder mixture of TiH2 and FeB. Arch Metall Mater. 2017;62:1393–1398.
  • Zhang Z, Chen DL. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr Mater. 2006;54:1321–1326.
  • Chelliah NM, Singh H, Surappa MK. Microstructural evolution and strengthening behavior in in-situ magnesium matrix composites fabricated by solidification processing. Mater Chem Phys. 2017;194:65–76.
  • Nie K, Deng K, Wang X, et al. Characterization and strengthening mechanism of SiC nanoparticles reinforced magnesium matrix composite fabricated by ultrasonic vibration assisted squeeze casting. J Mater Res. 2017;32:2609–2620.
  • Casati R, Vedani M. Metal matrix composites reinforced by nano-particles—a review. Metals (Basel). 2014;4:65–83.
  • Kim CS, Sohn I, Nezafati M, et al. Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J Mater Sci. 2013;48:4191–4204.
  • Mirza FA, Chen DL. A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites. Materials (Basel). 2015;8:5138–5153.
  • Ebeling R, Ashby MF. Dispersion hardening of copper single crystals. Phil. Mag. 1966;13:805–834.
  • Chelliah NM, Singh H, Raj R, et al. Processing, microstructural evolution and strength properties of in-situ magnesium matrix composites containing nano-sized polymer derived SiCNO particles. Mater Sci Eng A. 2017;685:429–438.
  • Sanaty-Zadeh A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Mater Sci Eng A. 2012;531:112–118.
  • Goh CS, Wei J, Lee LC, et al. Properties and deformation behaviour of Mg-Y2O3 nanocomposites. Acta Mater. 2007;55:5115–5121.
  • Dai LH, Ling Z, Bai YL. Size-dependent inelastic behavior of particle-reinforced metal-matrix composites. Compos Sci Technol. 2001;61:1057–1063.
  • Sulima I, Klimczyk P, Hyjek P. The influence of the sintering conditions on the properties of the stainless steel reinforced with TiB2 ceramics. Arch Mater Sci Eng. 2009;39:103–106.
  • Bacon DH, Edwards L, Moffatt JE, et al. Fatigue and fracture of a 316 stainless steel metal matrix composite reinforced with 25% titanium diboride. Int J Fatigue. 2013;48:39–47.
  • Yang N, Sinclair I. Fatigue crack growth in a particulate TiB2-reinforced powder metallurgy iron-based composite. Metall Mater Trans A. 2003;34:2017–2024.
  • Li BH, Liu Y, He L, et al. Fabrication of in situ TiB2 reinforced steel matrix composite by vacuum induction melting and its microstructure and tensile properties. Int J Cast Metals Res. 2010;23:211–215.
  • Sahoo S, Jha BB, Sharma J, et al. Mechanical and wear behaviour of hot-pressed 304 stainless steel matrix composites containing TiB2 particles. Trans Indian Inst Metals. 2019;72:1153–1165.
  • Tanaka K, Saito T. High-modulus steel composites for automobiles. Metal and Ceramic Matrix Composites, Vol. 3; 2004. p. 1–11.
  • Baxter D, Tarrant A, Valle R. Development of particulate reinforced stainless steel composites. Powder Metallurgy World Congress & Exhibition; 2004. p. 307–313.
  • Bonnet F, Bouaziz O, Chevallot J. Steel sheet for the manufacture of light structures and manufacturing process of this sheet, Arcelor, France. Patent number: 0629141305. 2006.
  • Sulima I, Boczkal G. Micromechanical, high-temperature testing of steel-TiB2 composite sintered by high pressure-high temperature method. Mater Sci Eng A. 2015;644:76–78.
  • Wang BG, Wang GD, Misra RDK, et al. Increased hot-formability and grain-refinement by dynamic recrystallization of ferrite in an in situ TiB2 reinforced steel matrix composite. Mater Sci Eng A. 2021;812:141100.
  • Li B, Xu K, Chen R, et al. On the fatigue crack propagation mechanism of a TiB2-reinforced high-modulus steel. Compos Part B. 2020;190:107960.
  • Sahoo S, Jha BB, Mahata TS, et al. Impression creep behaviour of TiB2 particles reinforced steel matrix composites. Mater Sci Technol. 2018;34:1965–1975.
  • Srivastava AK, Das K. The abrasive wear resistance of TIC and (Ti,W)C-reinforced Fe–17Mn austenitic steel matrix composites. Tribiology Int. 2010;43:944–950.
  • Rai VK, Srivastava R, Nath SK, et al. Wear in cast titanium carbide reinforced ferrous composites under dry sliding. Wear. 1999;231:265–271.
  • Bay CW. Wear of ceramic particle-reinforced metal-matrix composites. J Mater Sci. 2006;30:1967–1971.
  • Singh J, Chauhan A. Overview of wear performance of aluminium matrix composites reinforced with ceramic materials under the influence of controllable variables. Ceram Int. 2016;42:56–81.
  • Axén N, Zum Gahr KH. Abrasive wear of TiC-steel composite clad layers on tool steel. Wear. 1992;157:189–201.
  • Cho HR, Kim JS, Chung KH. Microstructure, mechanical, and tribological properties of pressureless sintered and spark plasma sintered Fe TiB2 nanocomposites. Tribol Int. 2019;131:83–93.
  • Sahoo S, Jha BB, Sahoo TK, et al. Investigation on the microstructure evolution and wear behaviour of TiB2 reinforced steel matrix composites developed by hot pressing. Asia Steel International Conference; 2018. p. 119.
  • Mondal DP, Das S. High stress abrasive wear behaviour of aluminium hard particle composites: effect of experimental parameters, particle size and volume fraction. Tribol Int. 2006;39:470–478.
  • Sulima I. Tribological properties of steel/TiB2 composites prepared by spark plasma sintering/własności tribologiczne kompozytów stal/TiB2 otrzymywanych metodą SPS. Arch Metall Mater. 2014;59:1263–1268.
  • Degnan CC, Shipway PH, Wood JV. Elevated temperature sliding wear behaviour of TiC-reinforced steel matrix composites. Wear. 2001;251:1444–1451.
  • Rao RN, Das S, Mondal DP, et al. Dry sliding wear maps for AA7010 (Al-Zn-Mg-Cu) aluminium matrix composite. Tribol Int. 2013;60:77–82.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.