143
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Decoupling the effect of stress and microstructure on MBN response in cast Q1N steel

ORCID Icon, , , &
Pages 1225-1235 | Received 25 May 2021, Accepted 01 Oct 2021, Published online: 20 Oct 2021

References

  • Murray RG. Welding astute-class submarines. Welding J. 2002;9(2).
  • Draper M, Ankem S. Mechanisms of temper embrittlement and recovery in cast HY-80 high-strength low-alloy steel. J Mater Sci. 2019;45:2601–2611.
  • Campbell FC. Elements of metallurgy and engineering alloys. Novelty (OH): ASM International; 2008.
  • Parka S, Lee K, Min K, et al. Influence of the thermodynamic parameters on the temper embrittlement of SA508 Gr.4N Ni–Cr–Mo low alloy steel with variation of Ni, Cr and Mn contents. J Nucl Mater. 2012;426(1–3):1–8.
  • Baak N, Nickel J, Biermann D. Barkhausen noise-based fatigue life prediction of deep drilled AISI 4140. Procedia Struct Integrity. 2019;18:274–279.
  • Krause TW, Atherton DL, Sullivan SP. Magnetic Barkhausen noise indicators of cracks in steel. Nondestr Test Eva. 1997;13:309–323.
  • Falahat S, Ghanei S, Kashefi M. Nondestructive examination of decarburised layer of steels using eddy current and magnetic Barkhausen noise testing techniques. Nondestr Test Eval. 2018;33(2):154–164.
  • Samimi AA, Krause TW, Clapham L. Stress response of magnetic Barkhausen noise in submarine hull steel: a comparative study. J Nondestr Eval. 2016;35:32.
  • Cullity BD. Introduction to magnetic materials. Reading (MA): Addison-Wesley; 1972.
  • Krause TW, Samimi AA. ASM handbook: Nondestructive evaluation and quality control. 10th ed. Novelty (OH): ASM International; 2018. p. 515–530.
  • White T, Krause W, Clapham L. Quantitative analysis of barkhausen noise measurements. Rev Quant Nondestruct Eval. 2008;27:445–452.
  • Saleem A, Swanson D, Underhill PR, et al. Affect of temper embrittlement and stress on magnetic Barkhausen noise of rolled HY-80 steel. Proceedings of 13th International Conference on Barkhausen Noise and Micromagnetic Testing (ICBM12); 2019 Sep 23–26; Prague, Czech Republic.
  • Inaguma T, Sakamoto H, Hasegawa M. Microstructure dependence of Barkhausen voltage pulse width in steel. J Appl Phys. 2012;111:63903.
  • Karjalainen LP, Moilanen M. Detection of plastic deformation during fatigue of mild steel by the measurement of Barkhausen noise. NDT Int. 1979;12(2):51–55.
  • Titto S, Otala M, Säynäjäkangas S. Non-destructive magnetic measurement of steel grain size. Non-Destr Test. 1976;9(3):117–120.
  • Gallaugher M, Samimi A, Clapham KTL, et al. Local magnetic properties in non-oriented electrical steel and their dependence on magnetic easy axis and misorientation parameters. Metall Mater Trans A. 2015;46A:1262–1276.
  • Ghanei S, Saheb Alam A, Kashefi M, et al. Nondestructive characterization of microstructure and mechanical properties of intercritically annealed dual-phase steel by magnetic Barkhausen noise technique. Mater Sci Eng A. 2014;607:253–260.
  • Varga R. Domain walls and their dynamics. Košice: Pavol Jozef Šafárik University; 2014.
  • Sahebalam A, Kashefi M, Kahrobaee S. Comparative study of eddy current and Barkhausen noise methods in microstructural assessment of heat treated steel parts. Nondestr Test Eval. 2014;29(3):208–218.
  • Davut K, Hakan Gür C. Monitoring the microstructural changes during tempering of quenched SAE 5140 steel by magnetic Barkhausen noise. J Nondestr Eval. 2007;26:107–113.
  • Kameda J. Characterization of tempered martensite microstructure and embrittlement by acoustic and magnetic Barkhausen signal measurement. Scr Metall. 1988;22(9):1487–1492.
  • Krause TW, Clapham L, Pattantyus LA, et al. Investigation of the stress-dependent magnetic easy axis in steel using magnetic Barkhausen noise. J Appl Phys. 1996;79(8):4242–4252.
  • Schuster S, Dertinger L, Dapprich D, et al. Application of magnetic Barkhausen noise for residual stress analysis: consideration of the microstructure. Mater Test. 2018;60(6):545–552.
  • Krause TW, Pulfer N, Weymann P, et al. Magnetic Barkhausen noise: stress-dependent mechanisms. IEEE Trans Magn. 1996;32(5):4764–4766.
  • Ghanei S, Kashefi M, Mazinani M. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite–martensite dual-phase steel. J Magn Mag Mater. 2014;365:103–110.
  • Falahat S, Ghanei S, Kashefi M. Nondestructive examination of decarburised layer of steels using eddy current and magnetic Barkhausen noise testing techniques. Nondestr Test Eval. 2018;33(2):154–164.
  • Sana MN, Cízekb J, Ríkc KK, et al. Monitoring of grinding burn via Barkhausen noise emission in case-hardened steel in large-bearing production. J Mater Process Technol. 2017;240:104–117.
  • Ju J, Lee J, Jang J, et al. Determination of welding residual stress distribution in API X65 pipeline using a modified magnetic Barkhausen noise method. Int J Press Vessels Pip. 2003;80(9):641–646.
  • Uchimoto T, Takagi T. Characterization of matrices and graphite forms of cast irons by electromagnetic nondestructive evaluation. Stud Appl Electromagn Mech. 2009;32:207–214.
  • Jarrahi F, Kashefi M, Ahmadzade-Beiraki E. An investigation into the applicability of Barkhausen noise technique in evaluation of machining properties of high carbon steel parts with different degrees of spheroidization. J Magn Mag Mater. 2015;385:107–111.
  • Zhu B, XuKai Z, Wang K, et al. Nondestructive evaluation of hot stamping boron steel with martensite/bainite mixed microstructures based on magnetic Barkhausen noise detection. J Magn Mag Mater. 2020;503:166598.
  • Sorsa A K, Santa-aho S, et al. Quantitative prediction of residual stress and hardness in case-hardened steel based on the Barkhausen noise measurement. NDT E Int. 2012;46:100–106.
  • Bertotti G. Space-time correlation properties of the magnetization process and eddy current losses: applications. I. Fine wall spacing. J Appl Phys. 1984;55(12):4339.
  • Krause TW, Saleem A, Underhill PR. Towards a physics based model of magnetic Barkhausen noise in steel. Adv Mater Lett. 2020;11(6):20061526.
  • White S, Krause TW, Clapham L. Control of flux in magnetic circuits for Barkhausen noise measurements. Meas Sci Technol. 2007;18:3501–3510.
  • White S, Clapham L, Krause TW. A multi-channel magnetic flux controller for periodic magnetizing conditions. IEEE Trans Instrum Meas. 2012;61(7):1896–1907.
  • Krause TW, Clapham L, Atherton DL. Characterization of the magnetic easy axis in pipeline steel using magnetic Barkhausen noise. J Appl Phys. 1995;75(12):7983–7988.
  • Krause TW, Mandal K, Atherton DL. Modelling of magnetic Barkhausen noise in single and dual easy axis systems in steel. J Magn Mag Mater. 1999;195(1):193–205.
  • Shilling JW, House Jr GL. Magnetic properties and domain structure in grain-oriented 3% Si-Fe. IEEE Trans Magn. 1974;10(2):195–223.
  • Bertotti G, Fiorillo F, Sassi MP. Barkhausen noise and domain structure dynamics in Si-Fe at different points of the magnetization curve. J Magn Mag Mater. 1981;Vol. 23(2):136–148.
  • Saleem A, Underhill PR, Farrell SP, et al. Magnetic Barkhausen noise measurements to assess temper embrittlement in HY-80 steels. IEEE Trans Magn. 2020;56(3):1–8.
  • Mandache C, Krause TW, Clapham L. Investigation of optimum field amplitude for stress dependence of magnetic Barkhausen noise. IEEE Trans Magn. 2007;43(11):3976–3983.
  • Jiles DC. The effect of stress on magnetic Barkhausen activity in ferromagnetic steels. IEEE Trans Magn. 1989;25(5):3455–3457.
  • Mandache C. Magnetic flux leakage investigation of interacting defects-stress and geometry effects [dissertation]. Kingston (ON): Queen’s University at Kingston; 2004.
  • Krause TW, Mandel K, Hauge C, et al. Correlation between flux leakage and magnetic Barkhausen noise: stress dependence in pipeline steel. J Magn Mag Mater. 1997;169(1-2):207–219.
  • Chikazumi S, Charap SH. Physics of magnetism. New York (NY): Wiley; 1964.
  • Tao P, Zhang C, Yang Z. Evolution and coarsening of carbides in 25Cr1Mo steel weld metal during high temperature tempering. J Iron Steel Res Int. 2010;17(5):74–78.
  • Krause TW, Clapham L, Pattantyus A. Investigation of the stress-dependent magnetic easy axis in steel using magnetic Barkhausen noise. J Appl Phys. 1996;79(8):4242–4253.
  • Krause TW, Spzunar JA, Birsan M, et al. Correlation of magnetic Barkhausen noise with core loss in oriented 3% Si–Fe steel laminates. J Appl Phys. 1996;79(6):3156–3168.
  • Krause TW, Clapham L, Atherton DL. Characterization of the magnetic easy axis in pipeline steel using magnetic Barkhausen noise. J Appl Phys. 1995;75(12):983–7988.
  • Clapham L, Heald C, Krause TW, et al. Origin of a magnetic easy axis in pipeline steel. J Appl Phys. 1999;86(31):1574–1580.
  • Kashefi M, Kahrobaee S. Assessment of retained austenite in AISI D2 tool steel using magnetic hysteresis and Barkhausen noise parameter. J Mater Eng Perform. 2015;24:1192–1198.
  • Yamaura S, Furuya Y, Watanabe T. The effect of grain boundary microstructure on Barkhausen noise in ferromagnetic materials. Acta Mater. 2001;49(15):3019–3027.
  • Kleber X, Vincent A. On the role of residual internal stresses and dislocations on Barkhausen noise in plastically deformed steel. NDT E Int. 2004;37(6):439–445.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.