383
Views
2
CrossRef citations to date
0
Altmetric
Review

The microstructure of Ti-Ni-Cu shape memory thin films: a review

, , , , &
Pages 143-158 | Received 24 Jul 2021, Accepted 02 Jan 2022, Published online: 28 Jan 2022

References

  • Otsuka K, Ren X. Physical metallurgy of Ti-Ni based shape memory alloys. Prog Mater Sci. 2005;50:511–678.
  • Otsuka K, Wayman CM. Shape memory materials. Cambridge, Cambridge University Press; 1999. p. 3–26.
  • Otsuka K, Ren X. Recent developments in the research of shape memory alloys. Intermetallics. 1999;7:511–528.
  • Van Humbeeck J. High temperature shape memory alloys. J Eng Mater Technol. 1999;121:98–101.
  • Jani JM, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Des. 2014;56:1078–1113.
  • Ma J, Karaman I, Noebe RD. High temperature shape memory alloys. Int Mater Rev. 2010;55:257–315.
  • Chung CY, Chan PM. Niti shape memory alloy thin film micro-cantilevers array. Thin Solid Films. 2011;519:5307–5309.
  • Fu Y, Huang W, Du H, et al. Characterization of TiNi shape-memory alloy thin films for MEMS applications. Surf Coat Technol. 2001;145:107–112.
  • Tabib-Azar M, Sutapun B, Huff M. Applications of TiNi thin film shape memory alloys in micro-opto-electro-mechanical systems. Sensor Actuat A-Phys. 1999;77:34–38.
  • Ishida A, Martynov V. Sputter-deposited shape-memory alloy thin films: properties and applications. MRS Bull. 2002;27:111–114.
  • Fu Y, Du H, Huang W. TiNi-based thin films in MEMS applications: a review. Sensor Actuator A. 2004;112:395–408.
  • Zhang HJ, Qiu CJ. A TiNiCu thin film micropump made by magnetron co-sputtered method. Mater Trans. 2006;47:532–535.
  • Tomozawa M, Kim HY, Miyazaki S. Shape memory behavior and internal structure of Ti–Ni–Cu shape memory thin films and their application for microactuators. Acta Mater. 2009;57:441–452.
  • Miyazaki S, Ishida A. Shape memory characteristics of sputter-deposited Ti-Ni-base thin films. Mater Trans JIM. 1994;35:14–19.
  • Li DS, Zhang XP, Xiong ZP, et al. Lightweight NiTi shape memory alloy based composites with high damping capacity and high strength. J Alloys Compd. 2010;490:L15–L19.
  • Chen Y, Jiang HC, Liu SW, et al. Damping capacity of TiNi-based shape memory alloys. J Alloys Compd. 2009;482:151–154.
  • Chluba C, Ge W, Miranda RL, et al. Ultralow-fatigue shape memory alloy films. Science. 2015;348:1004–1007.
  • Matsunaga T, Ogawa K, Kajiwara S, et al. High strength Ti–Ni-based shape memory thin films. Mater Sci Eng A. 1999;273–275:745–748.
  • Miyazaki S, Hashinaga T, Ishida A. Martensitic transformations in sputter-deposited Ti-Ni-Cu shape memory thin films. Thin Solid Films. 1996;281–282:364–367.
  • Mercier O, Melton KN. The substitution of Cu for Ni in NiTi shape memory alloys. Metall Mater Trans A. 1979;10:387–389.
  • Zarnetta R, Buenconsejo PJS, Savan A, et al. High-throughput study of martensitic transformations in the complete Ti-Ni-Cu system. Intermetallics. 2012;26:98–109.
  • Tomozawa M, Kim HY, Miyazaki S. Shape memory behavior and internal structure of Ti-Ni-Cu shape memory thin films and their application for microactuators. Acta Mater. 2009;57:441–452.
  • Ishida A, Sato M, Ogawa K. Shape memory behavior of Ti-Ni-Cu thin films. Mater Sci Eng A. 2006;438–440:683–686.
  • Ishida A, Sato M. Microstructure and shape memory behavior of annealed Ti51.5Ni(48.5-x)Cux (x = 6.5-20.9) thin films. Philos Mag. 2007;87:5523–5538.
  • Ishida A, Sato M, Ogawa K. Microstructure of annealed Ti48.5Ni(51.5-x)Cux (x = 6.2-33.5) thin films. Philos Mag. 2008;88:2427–2438.
  • Ishida A, Sato M. Shape memory behavior of Ti51.5Ni(48.5-x)Cux (x = 23.4-37.3) thin films with submicron grain sizes. Intermetallics. 2011;19:1878–1886.
  • Ishida A, Sato M, Gao ZY. Properties and applications of TiNiCu shape memory thin films. J Alloys Compd. 2013;577:S184–S189.
  • Gao ZY, Sato M, Ishida A. Microstructure and shape memory behavior of annealed Ti44.5Ni55.5-xCux (x =15.3-32.8) thin films with low Ti content. J Alloys Compd. 2015;619:389–395.
  • Ishida A, Sato M, Gao ZY. Microstructure and shape memory behavior of Ti55.5Ni44.5-xCux (x = 11.8-23.5) thin films. Intermetallics. 2015;58:103–108.
  • Hashinaga T, Miyazaki S, Ueki T, et al. Transformation and deformation behavior in sputter-deposited Ti-Ni-Cu thin films. J de Physique IV Proceedings. 1995;05:C8-689–C8-694.
  • Miyazaki S, Ishida A. Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films. Mater Sci Eng A. 1999;s273–275:106–133.
  • Ren X, Otsuka K. The role of softening in elastic constant c44 in martensitic transformation. Scr Mater. 1998;38:1669–1675.
  • Ishida A, Meng XL, Sato M. Structure of martensite in deformed Ti-Ni-Cu thin films. Acta Mater. 2011;59:2535–2543.
  • Meng XL, Sato M, Ishida A. Transmission electron microscopy study of the microstructure of B19 martensite in sputter-deposited Ti50.2Ni30Cu19.8 thin films. Scr Mater. 2008;59:451–454.
  • Ishida A, Sato M, Ogawa K. Microstructure and shape-memory behavior of annealed Ti51.5Ni33.1Cu15.4 thin films. Philos Mag Lett. 2006;86:13–20.
  • Kikuchi T, Ogawa K, Kajiwara S. High-resolution electron microscopy studies on coherent plate precipitates and nanocrystals formed by low-temperature heat treatments of amorphous Ti-rich Ti-Ni thin films. Philos Mag. 1998;78:467–489.
  • Meng XL, Sato M, Ishida A. Structure of martensite in Ti-rich Ti-Ni-Cu thin films annealed at different temperatures. Acta Mater. 2008;56:3394–3402.
  • Meng XL, Sato M, Ishida A. Structure of martensite in sputter-deposited (Ni, Cu)-rich Ti-Ni-Cu thin films containing Ti(Ni, Cu)2 precipitates. Acta Mater. 2009;57:1525–1535.
  • Zhang JX, Sato M, Ishida A. On the Ti2Ni precipitates and Guinier-Preston zones in Ti-rich Ti-Ni thin films. Acta Mater. 2003;51:3121–3130.
  • Zhang JX, Sato M, Ishida A. The effect of two types of precipitates upon the structure of martensite in sputter-deposited Ti-Ni thin films. Smart Materialia Structure. 2004;13:N37–N42.
  • Ishida A, Sato M, Gao ZY. Effects of Ti content on microstructure and shape memory behavior of TixNi(84.5-x)Cu15.5 (x = 44.6–55.4) thin films. Acta Mater. 2014;69:292–300.
  • Yi XY, Wang HZ, Sun KS, et al. Simultaneous enhancement of strength and ductility in quaternary Ti-V-Al-B light weight shape memory alloys with high transformation temperature. Intermetallics. 2020;126:106943.
  • Loo F, Bastin GF, Leenen A. Phase relations in the ternary Ti-Ni and Cu system at 800 and 870 oC. J Less-Common Met. 1978;57:111–121.
  • Mohammad TJ, Nor H, Haris M, et al. Reliability and fatigue analysis in cantilever-based MEMS devices operating in harsh environments. J Qual Re Eng. 2014;2014:1–16.
  • Schmidt M, Schütze A, Seelecke S. Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int J Refrig. 2015;54:88–97.
  • Manosa L, Planes A. Materials with Giant Mechanocaloric effects: cooling by strength. Adv Mater. 2017;29:1603607.1–1603607.25.
  • Wu Y, Ertekin E, Sehitoglu H. Elastocaloric cooling capacity of shape memory alloys – role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Mater. 2017;135:158–176.
  • Chen H, Xiao F, Liang X, et al. Giant elastocaloric effect with wide temperature window in an Al-doped nanocrystalline Ti-Ni-Cu shape memory alloy. Acta Mater. 2019;177:169–177.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.