487
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure, high-temperature oxidation and molten salt corrosion behaviour of CoCrFeNiAl0.1-RE HEA

Pages 215-229 | Received 13 Aug 2021, Accepted 18 Jan 2022, Published online: 11 Feb 2022

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.
  • Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375:213–218.
  • Wang L, Mercier D, Zanna S, et al. Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS. Corros Sci. 2020;167:108507.
  • Liu H, Xin C, Liu L, et al. Effects of Different Contents of Each Component on the Structural Stability and Mechanical Properties of Co-Cr-Fe-Ni High-Entropy Alloys. Appl Sci. 2021;11(6):2832.
  • Chen C, Liu N, Zhang J, et al. Microstructure stability and oxidation behaviour of (FeCoNiMo)90(Al/Cr)10high-entropy alloys. Mater Sci Technol. 2019;35(15):1883–1890.
  • Zhang Y, Li J, Wang J, et al. Temperature dependent deformation mechanisms of Al0.3CoCrFeNi high-entropy alloy, starting from serrated flow behavior. J Alloys Compd. 2018;757:39–43.
  • Garip Y, Ergin N, Ozdemir O. Resistance sintering of CoCrFeNiAlx (x = = = 0.7, 0.85, 1) high entropy alloys: microstructural characterization, oxidation and corrosion properties. J Alloys Compd. 2021;877:160180.
  • Li D, Gao MC, Hawk JA, et al. Annealing effect for the Al0.3CoCrFeNi high-entropy alloy fibers. J Alloys Compd. 2019;778:23–29.
  • Li D, Li C, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 2017;123:285–294.
  • Doleker KM, Erdogan A, Zeytin S. Laser re-melting influence on isothermal oxidation behavior of electric current assisted sintered CoCrFeNi, CoCrFeNiAl0.5 and CoCrFeNiTi0.5Al0.5 high entropy alloys. Surf Coat Technol. 2021;407:126775.
  • Liu N, Ding W, Wang XJ, et al. Phases, microstructures and properties of multi-component FeCoNi-based alloys. Mater Sci Technol. 2020;36(6):654–660.
  • Yeh J-W. Physical metallurgy of high-entropy alloys. JOM. 2015;67(10):2254–2261.
  • Erdogan A, Günen A, Gök MS, et al. Microstructure and mechanical properties of borided CoCrFeNiAl0.25Ti0.5 high entropy alloy produced by powder metallurgy. Vacuum. 2021;183:109820.
  • Liu N, Xu M, Qian Y, et al. Microstructure, phase stability, and oxidation resistance of (FeCoNi)60Al15Cr25−xTix high-entropy alloys. J Alloys Compd. 2021;870:159320.
  • Ji W, Fu Z, Wang W, et al. Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J Alloys Compd. 2014;589:61–66.
  • Yang T, Xia S, Liu S, et al. Effects of Al addition on microstructure and mechanical properties of Al CoCrFeNi high-entropy alloy. Mater Sci Eng A. 2015;648:15–22.
  • Wang W-R, Wang W-L, Wang S-C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics. 2012;26:44–51.
  • Li R, Liaw P, Zhang Y. Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Mater Sci Eng A. 2017;707:668–673.
  • Rao J, Diao H, Ocelík V, et al. Secondary phases in AlxCoCrFeNi high-entropy alloys: an in-situ TEM heating study and thermodynamic appraisal. Acta Mater. 2017;131:206–220.
  • Chen M, Lan L, Shi X, et al. The tribological properties of Al0.6CoCrFeNi high-entropy alloy with the σ phase precipitation at elevated temperature. J Alloys Compd. 2019;777:180–189.
  • Patel K, Sadeghilaridjani M, Pole M, et al. Hot corrosion behavior of refractory high entropy alloys in molten chloride salt for concentrating solar power systems. Sol Energy Mater Sol Cells. 2021;230:111222.
  • Kim Y-K, Joo Y-A, Kim HS, et al. High temperature oxidation behavior of Cr-Mn-Fe-Co-Ni high entropy alloy. Intermetallics. 2018;98:45–53.
  • Garip Y, Ozdemir O. Corrosion behavior of the resistance sintered TiAl based intermetallics induced by two different molten salt mixture. Corros Sci. 2020;174:108819.
  • Garip Y, Garip Z, Ozdemir O. Prediction modeling of type-I hot corrosion performance of Ti–Al–Mo-X (X = Cr, Mn) alloys in (Na, K)2SO4 molten salt mixture environment at 900°C. J Alloys Compd. 2020;843:156010.
  • Garip Y, Ozdemir O. Hot corrosion behavior of Ti-48Al and Ti-48Al-2Cr intermetallic alloys produced by electric current activated sintering. Metall Mater Trans A. 2018;49(6):2455–2462.
  • Garip Y, Ozdemir O. Comparative study of the oxidation and hot corrosion behaviors of TiAl-Cr intermetallic alloy produced by electric current activated sintering. J Alloys Compd. 2019;780:364–377.
  • Li L, Lu J, Liu X, et al. Al CoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25% NaCl at 900 °C. Corros Sci. 2021;187:109479.
  • Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. J Appl Phys. 2011;109(10):103505.
  • Zhang Y, Lu Z, Ma S, et al. Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 2014;4(2):57–62.
  • Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46(12):2817–2829.
  • Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2012;132(2–3):233–238.
  • Breitbarth E, Zaefferer S, Archie F, et al. Evolution of dislocation patterns inside the plastic zone introduced by fatigue in an aged aluminium alloy AA2024-T3. Mater Sci Eng A. 2018;718:345–349.
  • Masuda H, Tobe H, Sato E, et al. Transgranular dislocation activities and substructural evolutions accommodating two-dimensional grain boundary sliding in ODS ferritic steel. Acta Mater. 2017;132:245–254.
  • Huang L, Geng L, Fu Y, et al. Oxidation behavior of in situ TiCp/Ti6Al4V composite with self-assembled network microstructure fabricated by reaction hot pressing. Corros Sci. 2013;69:175–180.
  • Tong Z, Liu H, Jiao J, et al. Laser additive manufacturing of CrMnFeCoNi high entropy alloy: microstructural evolution, high-temperature oxidation behavior and mechanism. Opt Laser Technol. 2020;130:106326.
  • Zheng L, Zhang M, Dong J. Oxidation behavior and mechanism of powder metallurgy Rene95 nickel based superalloy between 800 and 1000°C. Appl Surf Sci. 2010;256(24):7510–7515.
  • Erdogan A, Doleker KM, Zeytin S. Effect of Al and Ti on high-temperature oxidation behavior of CoCrFeNi-based high-entropy alloys. JOM. 2019;71(10):3499–3510.
  • Kai W, Li C, Cheng F, et al. The oxidation behavior of an equimolar FeCoNiCrMn high-entropy alloy at 950°C in various oxygen-containing atmospheres. Corros Sci. 2016;108:209–214.
  • Tuguhiro T, Kataoka N, Tanaka H, et al. XPS study from a clean surface of Al2O3 single crystals. Procedia Eng. 2017;216:175–181.
  • Lynch B, Wiame F, Maurice V, et al. XPS study of oxide nucleation and growth mechanisms on a model FeCrNiMo stainless steel surface. Appl Surf Sci. 2021;151681.
  • Wilson D, Langell M. XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl Surf Sci. 2014;303:6–13.
  • Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci. 2008;254(8):2441–2449.
  • Hussain I, Iqbal S, Hussain T, et al. An oriented Ni–Co-MOF anchored on solution-free 1D CuO: a p–n heterojunction for supercapacitive energy storage. J Mater Chem A. 2021;9(33):17790–17800.
  • Qiu Y, Thomas S, Fabijanic D, et al. Microstructural evolution, electrochemical and corrosion properties of Al CoCrFeNiTi high entropy alloys. Mater Des. 2019;170:107698.
  • Wang C-J, He T-T. Morphological development of subscale formation in Fe–Cr–(Ni) alloys with chloride and sulfates coating. Oxid Met. 2002;58(3):415–437.
  • Shinata Y, Hara M, Nakagawa T. Accelerated oxidation of chromium by trace of sodium chloride vapor. Mater Trans JIM. 1991;32(10):969–972.
  • Hossain M, Saunders S. A microstructural study of the influence of NaCl vapor on the oxidation of a Ni-Cr-Al alloy at 850°C. Oxid Met. 1978;12(1):1–22.
  • Geng Y, Dong X, Wang K, et al. Effect of microstructure evolution and phase precipitations on hot corrosion behavior of IN718 alloy subjected to multiple laser shock peening. Surf Coat Technol. 2019;370:244–254.
  • Grabke H. Surface and interface analysis: an international journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films. Surface and Interface Analysis. 2000;30(1):112–119.
  • Hou PY, Stringer J. Oxide scale adhesion and impurity segregation at the scale/metal interface. Oxid Met. 1992;38(5):323–345.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.