416
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing mechanical properties of metallic materials by architecting gradient structures

, , , , , , , , & show all
Pages 254-267 | Received 12 Nov 2021, Accepted 21 Jan 2022, Published online: 18 Feb 2022

References

  • Ma E, Zhu T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017;20:323–331.
  • Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5:527–532.
  • Li X, Lou L, Song W, et al. Novel bimorphological anisotropic bulk nanocomposite materials with high energy products. Adv Mater. 2017;29:1606430.
  • Li X, Lou L, Song W, et al. Controllably manipulating three-dimensional hybrid nanostructures for bulk nanocomposites with large energy products. Nano Lett. 2017;17:2985–2993.
  • Huang G, Li X, Lou L, et al. Engineering bulk, layered, multicomponent nanostructures with high energy density. Small. 2018;14:1800619.
  • Zhang X. Heterostructures: new opportunities for functional materials. Mater Res Lett. 2020;8:49–59.
  • Zhu Y, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9:1–31.
  • Liu YG, Xu L, Wang QF, et al. Development of crystal texture in Nd-lean amorphous Nd9Fe85B6 under hot deformation. Appl Phys Lett. 2009;94:172502.
  • Lou L, Li Y, Li X, et al. Directional magnetization reversal enables ultrahigh energy density in gradient nanostructures. Adv Mater. 2021;33:2102800.
  • Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331:1587–1590.
  • Yin Z, Yang X, Ma X, et al. Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment. Mater Des. 2016;105:89–95.
  • Moering J, Ma X, Malkin J, et al. Synergetic strengthening far beyond rule of mixtures in gradient structured aluminum rod. Scr Mater. 2016;122:106–109.
  • Wu X, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci. 2014;111:7197–7201.
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145–151.
  • Shi Y, Wang Y, Shang W, et al. Influence of grain size distribution on mechanical properties and HDI strengthening and work-hardening of gradient-structured materials. Mater Sci Eng A. 2021;811:141053.
  • Wei Y, Li Y, Zhu L, et al. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat Commun. 2014;5:1–8.
  • Hasan MN, Liu YF, An XH, et al. Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures. Int J Plast. 2019;123:178–195.
  • Li X, Lu L, Li J, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat Rev Mater. 2020;5:706–723.
  • Wu X, Zhu Y, Lu K. Ductility and strain hardening in gradient and lamellar structured materials. Scr Mater. 2020;000:1–5.
  • Zhao J, Lu X, Kan Q, et al. Multiple mechanism based constitutive modeling of gradient nanograined material. Inter J Plast. 2020;125:314–330.
  • Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7:393–398.
  • Cheng Z, Zhou H, Lu Q, et al. Extra strengthening and work hardening in gradient nanotwinned metals. Science. 2018;362:eaau1925.
  • Shi Y, Wang Y, Wang L, et al. A gradient dislocation-structured low-carbon steel with enhanced strength-ductility synergy. Mater Lett. 2020;265:127386.
  • Guo N, Song B, Yu H, et al. Enhancing tensile strength of Cu by introducing gradient microstructures via a simple torsion deformation. Mater Des. 2016;90:545–550.
  • Lin Y, Pan J, Zhou HF, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Mater. 2018;153:279–289.
  • Fang XT, He GZ, Zheng C, et al. Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass. Acta Mater. 2020;186:644–655.
  • Moon JH, Baek SM, Lee SG, et al. Effects of residual stress on the mechanical properties of copper processed using ultrasonic-nanocrystalline surface modification. Mater Res Lett. 2019;7:97–102.
  • Wang L, Li B, Shi Y, et al. Optimizing mechanical properties of gradient-structured low-carbon steel by manipulating grain size distribution. Mater Sci Eng A. 2019;743:309–313.
  • Shahrezaei S, Sun Y, Mathaudhu SN. Strength-ductility modulation via surface severe plastic deformation and annealing. Mater Sci Eng A. 2019;761:138023.
  • Wang Y, Chen M, Zhou F, et al. High tensile ductility in a nanostructured metal. Nature. 2002;419:912–915.
  • Wang L, Shi Y, Zhang Y, et al. High tensile ductility and strength in a gradient structured Zr. Mater Lett. 2018;228:500–503.
  • Wang YM, Ma E, Chen MW. Enhanced tensile ductility and toughness in nanostructured Cu. Appl Phys Lett. 2002;80:2395–2397.
  • Song B, Guo N, Xin R, et al. Strengthening and toughening of extruded magnesium alloy rods by combining pre-torsion deformation with subsequent annealing. Mater Sci Eng A. 2016;650:300–304.
  • Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10:817–822.
  • Launey ME, Ritchie RO. On the fracture toughness of advanced materials. Adv Mater 2009;21:2103–2110.
  • Huang XX, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals. Science. 2006;312:249–251.
  • Shao CW, Zhang P, Zhu YK, et al. Simultaneous improvement of strength and plasticity: additional work-hardening from gradient microstructure. Acta Mater. 2018;145:413–428.
  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189.
  • Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater. 2004;3:511–516.
  • Wang Y, Jiao T, Ma E. Dynamic processes for nanostructure development in Cu after severe cryogenic rolling deformation. Mater Trans. 2003;44:1926–1934.
  • Speer J, Matlock D, De Cooman B, et al. Carbon partitioning into austenite after martensite transformation. Acta Mater. 2003;51:2611–2622.
  • He BB, Hu B, Yen HW, et al. High dislocation density–induced large ductility in deformed and partitioned steels. Science. 2017;357:1029–1032.
  • Lu K. Making strong nanomaterials ductile with gradients. Science. 2014;345:1455–1456.
  • Lu S, Xiong J, Wei D, et al. Effect of dislocation mechanism on elastoplastic behavior of crystals with heterogeneous dislocation distribution. Acta Mech Solida Sin. 2020;33:487–495.
  • Wu XL, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2:185–191.
  • Yang X, Ma X, Moering J, et al. Influence of gradient structure volume fraction on the mechanical properties of pure copper. Mater Sci Eng A. 2015;645:280–285.
  • Yang MX, Li RG, Jiang P, et al. Residual stress provides significant strengthening and ductility in gradient structured materials. Mater Res Lett. 2019;7:433–438.
  • Cai MH, Dhinwal SS, Han QH, et al. Gradient ultrafine ferrite and martensite structure and its tensile properties by asymmetric rolling in low carbon microalloyed steel. Mater Sci Eng A. 2013;583:205–209.
  • Xi F, Li S, Ma W, et al. A review of hydrometallurgy techniques for the removal of impurities from metallurgical-grade silicon. Hydrometallurgy. 2021;201:105553.
  • Biswas S, Kim DI, Suwas S. Asymmetric and symmetric rolling of magnesium: evolution of microstructure, texture and mechanical properties. Mater Sci Eng A. 2012;550:19–30.
  • Zhao HZ, You ZS, Tao NR, et al. Anisotropic strengthening of nanotwin bundles in heterogeneous nanostructured Cu: effect of deformation compatibility. Acta Mater. 2021;210:116830.
  • Chen L, Yuan F, Jiang P, et al. Mechanical properties and deformation mechanism of Mg-Al-Zn alloy with gradient microstructure in grain size and orientation. Mater Sci Eng A. 2017;694:98–109.
  • Ning J, Xu B, Sun M. Strain hardening and tensile behaviors of gradient structure Mg alloys with different orientation relationships. Mater Sci Eng A. 2018;735:275–287.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.