389
Views
2
CrossRef citations to date
0
Altmetric
Review

Friction stir welding of aluminium to magnesium: a critical review

ORCID Icon, , , &
Pages 517-534 | Received 30 Jun 2021, Accepted 19 Mar 2022, Published online: 15 Apr 2022

References

  • Zhang GW, Zeng G, Iyakaremye V, et al. Regional changes in extreme heat events in China under stabilized 1.5 °C and 2.0 °C global warming. Adv Clim Change Res. 2020;11(3):198–209.
  • Law A, Saunders P, Middleton J, et al. Global warming must stay below 1.5° C. Br Med J. 2018;363:k4410.
  • Ishikawa T, Amaoka K, Masubuchi Y, et al. Overview of automotive structural composites technology developments in Japan. Compos Sci Technol. 2018;155:221–246.
  • González Palencia JC, Furubayashi T, Nakata T. Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials. Energy. 2012;48(1):548–565.
  • González Palencia JC, Sakamaki T, Araki M, et al. Impact of powertrain electrification, vehicle size reduction and lightweight materials substitution on energy use, CO2 emissions and cost of a passenger light-duty vehicle fleet. Energy. 2015;93:1489–1504.
  • Liu P, Li YJ, Geng HR, et al. Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials. Mater Lett. 2007;61(6):1288–1291.
  • Chi CT, Chao CG, Liu TF, et al. Aluminum element effect for electron beam welding of similar and dissimilar magnesium-aluminum-zinc alloys. Scr Mater. 2007;56(9):733–736.
  • Ben-Artzy A, Munitz A, Kohn G, et al. Joining of light hybrid constructions made of magnesium and aluminum alloys, 2002.
  • Thomas WM, Johnson KI, Wiesner CS. Friction stir welding-recent developments in tool and process technologies. Adv Eng Mater. 2003;5(7):485–490.
  • Thomas WM, Sylva G, Developments in friction stir welding, 2004.
  • Sato YS, Park SHC, Michiuchi M, et al. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scr Mater. 2004;50(9):1233–1236.
  • Venkateswaran P, Reynolds AP. Factors affecting the properties of friction stir welds between aluminum and magnesium alloys. Mater Sci Eng A. 2012;545:26–37.
  • Singh VP, Patel SK, Ranjan A, et al. Recent research progress in solid state friction-stir welding of aluminium–magnesium alloys: a critical review. J Mater Res Technol. 2020;9(3):6217–6256.
  • Baghdadi AH, Sajuri Z, Selamat NFM, et al. Effect of intermetallic compounds on the fracture behavior of dissimilar friction stir welding joints of Mg and Al alloys. Int J Miner Metall Mater. 2019;26(10):1285–1298.
  • Verma J, Taiwade RV, Reddy C, et al. Effect of friction stir welding process parameters on Mg-AZ31B/Al-AA6061 joints. Mater Manuf Processes. 2018;33(3):308–314.
  • Zuo Y, Chang YA. Thermodynamic calculation of the Al-Mg phase-diagram. Calphad. 1993;17(2):161–174.
  • Beygi R, Pouraliakbar H, Torabi K, et al. The inhibitory effect of stir zone liquefaction and eutectic-phase formation on the growth of γ/β intermetallics during dissimilar FSW of Al/Mg alloys. J Manuf Process. 2021;70:152–162.
  • Mohammadi J, Behnamian Y, Mostafaei A, et al. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: microstructure studies and mechanical characterizations. Mater Charact. 2015;101:189–207.
  • Ma ZY, Pilchak AL, Juhas MC, et al. Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Scr Mater. 2008;58(5):361–366.
  • Choi J-W, Liu H, Ushioda K, et al. Effect of an Al filler material on interfacial microstructure and mechanical properties of dissimilar friction stir welded Ti/Mg joint. Mater Charact. 2019;155:109801.
  • Yamamoto N, Liao J, Watanabe S, et al. Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of a high strength Mg alloy and Al alloy. Mater Trans. 2009;50(12):2833–2838.
  • Balluffi RW, Allen SM, Carter WC. Diffusion in multicomponent systems. In: Kinetics of materials. Kemper RA. Massachusetts: A John Wiley & Sons; 2005. p. 131–144.
  • Kostka A, Coelho RS, dos Santos J, et al. Microstructure of friction stir welding of aluminium alloy to magnesium alloy. Scr Mater. 2009;60(11):953–956.
  • Morishige T, Kawaguchi A, Tsujikawa M, et al. Dissimilar welding of Al and Mg alloys by FSW. Mater Trans. 2008;49(5):1129–1131.
  • Shi H, Chen K, Liang Z, et al. Intermetallic compounds in the banded structure and their effect on mechanical properties of Al/Mg dissimilar friction stir welding joints. J Mater Sci Technol. 2017;33(4):359–366.
  • Chen B, Wang Y, Xiao C, et al. The formation mechanism of intermetallic compounds in Al/Mg friction-stir weld joint. Mater Sci Technol. 2018;34(6):703–711.
  • Mofid MA, Loryaei E. Investigating microstructural evolution at the interface of friction stir weld and diffusion bond of Al and Mg alloys. J Mater Res Technol. 2019;8(5):3872–3877.
  • Firouzdor V, Kou S. Al-to-Mg friction stir welding: effect of Material position, travel speed, and rotation speed. Metall Mater Trans A. 2010;41(11):2914–2935.
  • Chen YC, Nakata K. Friction stir lap joining aluminum and magnesium alloys. Scr Mater. 2008;58(6):433–436.
  • Suhuddin UFH, Fischer V, dos Santos JF. The thermal cycle during the dissimilar friction spot welding of aluminum and magnesium alloy. Scr Mater. 2013;68(1):87–90.
  • Wang D, Liu J, Xiao B, et al. Mg/Al reaction and mechanical properties of Al alloy/Mg alloy friction stir welding joints. Acta Metall Sinica. 2010;46(5):589–594.
  • Gerlich A, Su P, North TH. Peak temperatures and microstructures in aluminium and magnesium alloy friction stir spot welds. Sci Technol Weld Joining. 2005;10(6):647–652.
  • Suhuddin U, Fischer V, dos Santos J. Formation of intermetallic compounds in dissimilar friction spot weld of Al to Mg alloys. Mater Sci Forum. 2013;765:731–735.
  • Zhang S, Shi Q, Liu Q, et al. Effects of tool tilt angle on the in-process heat transfer and mass transfer during friction stir welding. Int J Heat Mass Transfer. 2018;125:32–42.
  • Yan J, Xu Z, Li Z, et al. Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring. Scr Mater. 2005;53(5):585–589.
  • Kwon YJ, Shigematsu I, Saito N. Dissimilar friction stir welding between magnesium and aluminum alloys. Mater Lett. 2008;62(23):3827–3829.
  • Liang Z, Chen K, Wang X, et al. Effect of tool offset and tool rotational speed on enhancing mechanical property of Al/Mg dissimilar FSW joints. Metall Mater Trans A. 2013;44(8):3721–3731.
  • McLean AA, Powell GLF, Brown IH, et al. Friction stir welding of magnesium alloy AZ31B to aluminium alloy 5083. Sci Technol Weld Joining. 2003;8(6):462–464.
  • Pourahmad P, Abbasi M. Materials flow and phase transformation in friction stir welding of Al 6013/Mg. Trans Nonferrous Met Soc China. 2013;23(5):1253–1261.
  • Buffa G, Baffari D, Di Caro A, et al. Friction stir welding of dissimilar aluminium–magnesium joints: sheet mutual position effects. Sci Technol Weld Joining. 2015;20(4):271–279.
  • Fu B, Qin G, Li F, et al. Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy. J Mater Process Technol. 2015;218:38–47.
  • Li P, You G, Wen H, et al. Friction stir welding between the high-pressure die casting of AZ91 magnesium alloy and A383 aluminum alloy. J Mater Process Technol. 2019;264:55–63.
  • Md S, Birru AK. Mechanical and metallurgical properties of friction stir welded dissimilar joints of AZ91 magnesium alloy and AA 6082-T6 aluminium alloy. J Magnes Alloys. 2019;7(2):264–271.
  • Deng Y, Qiu Z, Zuo D, et al. Influence of tool offset on microstructure and properties of Mg/Al dissimilar alloys by friction stir welding joints at low heat input. Int J Adv Manuf Technol. 2020;109(9–12):2845–2853.
  • Pew JW, Nelson TW, Sorensen CD. Torque based weld power model for friction stir welding. Sci Technol Weld Joining. 2007;12(4):341–347.
  • Dorbane A, Mansoor B, Ayoub G, et al. Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061. Mater Sci Eng A. 2016;651:720–733.
  • Kumar U, Acharya U, Saha SC, et al. Microstructure and mechanical property of friction stir welded Al-Mg joints by adopting modified joint configuration technique. Mater Today Proc. 2020;26:2083–2088.
  • Azizieh M, Sadeghi Alavijeh A, Abbasi M, et al. Mechanical properties and microstructural evaluation of AA1100 to AZ31 dissimilar friction stir welds. Mater Chem Phys. 2016;170:251–260.
  • Paradiso V, Rubino F, Carlone P, et al. Magnesium and aluminium alloys dissimilar Joining by friction stir welding. Procedia Eng. 2017;183:239–244.
  • Kang J, Fu RD, Luan GH, et al. Effect of the pin offseting on microstructures and mechanical properties of FSW joints of 7075 Al alloy-AZ31B Mg alloy. Rare Met Mater Eng. 2011;40(S2):294–299.
  • Zhang C, Cui L, Liu Y, et al. Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel. J Mater Sci Technol. 2018;34(5):756–766.
  • Hu W, Ma Z, Ji S, et al. Improving the mechanical property of dissimilar Al/Mg hybrid friction stir welding joint by PIO-ANN. J Mater Sci Technol. 2020;53:41–52.
  • Zhao Y, Huang L, Zhao Z, et al. Effect of travel speed on the microstructure of Al-to-Mg FSW joints. Mater Sci Technol. 2016;32(10):1025.
  • Khodir SA, Shibayanagi T. Dissimilar friction stir welded joints between 2024-T3 aluminum alloy and AZ31 magnesium alloy. Mater Trans. 2007;48(9):2501–2505.
  • Yaduwanshi DK, Bag S, Pal S. Numerical modeling and experimental investigation on plasma-assisted hybrid friction stir welding of dissimilar materials. Mater Des. 2016;92:166–183.
  • Sundqvist J, Kim KH, Bang HS, et al. Numerical simulation of laser preheating of friction stir welding of dissimilar metals. Sci Technol Weld Joining. 2018;23(4):351–356.
  • Bilgin M, Karabulut Ş, Özdemir A. Investigation of heat-assisted dissimilar friction stir welding of AA7075-T6 aluminum and AZ31B magnesium alloys. Arab J Sci Eng. 2020;45(2):1081–1095.
  • Chang W-S, Rajesh SR, Chun C-K, et al. Microstructure and mechanical properties of hybrid laser-friction stir welding between AA6061-T6 Al alloy and AZ31 Mg alloy. J Mater Sci Technol. 2011;27(3):199–204.
  • Ji SD, Li ZW, Wang Y, et al. Joint formation and mechanical properties of back heating assisted friction stir welded Ti-6Al-4V alloy. Mater Des. 2017;113:37–46.
  • Ji SD, Li ZW, Zhang LG, et al. Eliminating the tearing defect in Ti-6Al-4V alloy joint by back heating assisted friction stir welding. Mater Lett. 2017;188:21–24.
  • Hernández-García D, Saldaa-Garcés R, García-Vázquez F, et al. Friction stir welding of dissimilar AA7075-T6 to AZ31B-H24 alloys. MRS Adv. 2017;2:4055–4063.
  • Mofid MA, Abdollah-zadeh A, Malek Ghaini F. The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy. Mater Design (1980–2015). 2012;36:161–167.
  • Mofid MA, Abdollah-Zadeh A, Ghaini FM, et al. Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen: an improved method to join Al alloys to Mg alloys. Metall Mater Trans A. 2012;43(13):5106–5114.
  • Mofid MA, Abdollah-Zadeh A, Gür CH. Investigating the formation of intermetallic compounds during friction stir welding of magnesium alloy to aluminum alloy in air and under liquid nitrogen. Int J Adv Manuf Technol. 2014;71(5–8):1493–1499.
  • Zhao Y, Jiang S, Yang S, et al. Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding. Int J Adv Manuf Technol. 2016;83(1–4):673–679.
  • Zhao Y, Lu Z, Yan K, et al. Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys. Mater Design (1980–2015). 2015;65:675–681.
  • Mehta KP, Carlone P, Astarita A, et al. Conventional and cooling assisted friction stir welding of AA6061 and AZ31B alloys. Mater Sci Eng A. 2019;759:252–261.
  • Niu S, Ji S, Yan D, et al. AZ31B/7075-T6 alloys friction stir lap welding with a zinc interlayer. J Mater Process Technol. 2019;263:82–90.
  • Deng H, Chen Y, Zhang T, et al. Effect of Zn-brazed-interface on microstructures and mechanical properties of dissimilar 2A12/AZ31 alloys friction stir lap welds. Mater Lett. 2019;255:126543.
  • Abdollahzadeh A, Shokuhfar A, Cabrera JM, et al. The effect of changing chemical composition on dissimilar Mg/Al friction stir welded butt joints using zinc interlayer. J Manuf Process. 2018;34:18–30.
  • Tabasi M, Farahani M, Givi MKB, et al. Dissimilar friction stir welding of 7075 aluminum alloy to AZ31 magnesium alloy using SiC nanoparticles. The Int J Adv Manuf Technol. 2016;86(1–4):705–715.
  • Sharifi Asl N, Mirsalehi SE, Dehghani K. Effect of TiO2 nanoparticles addition on microstructure and mechanical properties of dissimilar friction stir welded AA6063-T4 aluminum alloy and AZ31B-O magnesium alloy. J Manuf Process. 2019;38:338–354.
  • Bag S, Yaduwanshi D, Pal S. 2 – Heat transfer and material flow in friction stir welding. In: MKB Givi, P Asadi, editors. Advances in friction-stir welding and processing. Guwahati: Woodhead Publishing; 2014. p. 21–63.
  • Schmidt H, Hattel J, Wert J. An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng. 2003;12:143.
  • Champagne VK, West MK, Rokni MR, et al. Joining of cast ZE41A Mg to wrought 6061 Al by the cold spray process and friction stir welding. J Therm Spray Technol. 2016;25(1–2):143–159.
  • Mishra RS, De PS, Kumar N. Friction stir welding and processing: science and engineering. Springer International Publishing; 2014.
  • Leal RM, Sakharova N, Vilaca P, et al. Effect of shoulder cavity and welding parameters on friction stir welding of thin copper sheets. Sci Technol Weld Joining. 2011;16(2):146–152.
  • Galvao I, Leal RM, Rodrigues DM, et al. Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets. J Mater Process Technol. 2013;213(2):129–135.
  • Malarvizhi S, Balasubramanian V. Influences of tool shoulder diameter to plate thickness ratio (D/T) on stir zone formation and tensile properties of friction stir welded dissimilar joints of AA6061 aluminum–AZ31B magnesium alloys. Mater Des. 2012;40:453–460.
  • Casalino G, Campanelli S, Mortello M. Influence of shoulder geometry and coating of the tool on the friction stir welding of aluminium alloy plates. Proc Eng. 2014;69:1541–1548.
  • Scialpi A, De Filippis LAC, Cavaliere P. Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Mater Des. 2007;28(4):1124–1129.
  • Hossain MAM, Hasan MT, Hong ST, et al. Friction stir spot welded joints of 409L stainless steels fabricated by a convex shoulder tool. Met Mater Int. 2013;19(6):1243–1250.
  • Boccarusso L, Astarita A, Carlone P, et al. Dissimilar friction stir lap welding of AA 6082 – Mg AZ31: force analysis and microstructure evolution. J Manuf Process. 2019;44:376–388.
  • Yang CL, Wu CS, Lv XQ. Numerical analysis of mass transfer and material mixing in friction stir welding of aluminum/magnesium alloys. J Manuf Process. 2018;32:380–394.
  • Liu XC, Wu CS, Padhy GK. Improved weld macrosection, microstructure and mechanical properties of 2024Al-T4 butt joints in ultrasonic vibration enhanced friction stir welding. Sci Technol Weld Joining. 2015;20(4):345–352.
  • Liu X, Wu C, Padhy GK. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding. Scr Mater. 2015;102:95–98.
  • Zhao W, Wu C, Su H. Numerical investigation of heat generation and plastic deformation in ultrasonic assisted friction stir welding. J Manuf Process. 2020;56:967–980.
  • Thoma M, Wagner G, Strass B, et al. Ultrasound enhanced friction stir welding of aluminum and steel: process and properties of EN AW 6061/DC04-joints. J Mater Sci Technol. 2018;34(1):163–172.
  • Zhong YB, Wu CS, Padhy GK. Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding. J Mater Process Technol. 2017;239:273–283.
  • Lv XQ, Wu CS, Padhy GK. Diminishing intermetallic compound layer in ultrasonic vibration enhanced friction stir welding of aluminum alloy to magnesium alloy. Mater Lett. 2017;203:81–84.
  • Lv X, Wu C, Yang C, et al. Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy. J Mater Process Technol. 2018;254:145–157.
  • Kumar S, Wu C. Suppression of intermetallic reaction layer by ultrasonic assistance during friction stir welding of Al and Mg based alloys. J Alloys Compd. 2020;827:154343.
  • Liu Z, Ji S, Meng X. Improving joint formation and tensile properties of dissimilar friction stir welding of aluminum and magnesium alloys by solving the pin adhesion problem. J Mater Eng Perform. 2018;27(3):1404–1413.
  • Meng X, Jin Y, Ji S, et al. Improving friction stir weldability of Al/Mg alloys via ultrasonically diminishing pin adhesion. J Mater Sci Technol. 2018;34(10):1817–1822.
  • Russell MJ, Blignault C, Horrex NL, et al. Recent developments in the friction stir welding of titanium alloys. Weld World. 2008;52(9):12–15.
  • Sinhmar S, Dwivedi DK. Mechanical behavior of FSW joint welded by a novel designed stationary shoulder tool. J Mater Process Technol. 2020;277:116482.
  • Ji S, Li Z. Microstructure and mechanical properties of friction stir lap welded Mg/Al joint assisted by stationary shoulder. Met Mater Int. 2017;23(6):1158–1167.
  • Ji S, Li Z, Zhang L, et al. Effect of lap configuration on magnesium to aluminum friction stir lap welding assisted by external stationary shoulder. Mater Des. 2016;103:160–170.
  • Wu BS, Liu JL, Song Q, et al. Controllability of joint integrity and mechanical properties of friction stir welded 6061-T6 aluminum and AZ31B magnesium alloys based on stationary shoulder. High Temp Mater Processes. 2019;38:557–566.
  • Liu Z, Meng X, Ji S, et al. Improving tensile properties of Al/Mg joint by smashing intermetallic compounds via ultrasonic-assisted stationary shoulder friction stir welding. J Manuf Process. 2018;31:552–559.
  • Hirano S, Okamoto K, Doi M, et al. Microstructure of the interface in magnesium alloy to aluminium alloy dissimilar joints produced by friction stir welding. Weld Int. 2004;18(9):702–708.
  • Mao Y, Ke L, Chen Y, et al. Inhomogeneity of microstructure and mechanical properties in the nugget of friction stir welded thick 7075 aluminum alloy joints. J Mater Sci Technol. 2018;34(1):228–236.
  • Xu WF, Luo YX, Fu MW. Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy. Mater Charact. 2018;138:48–55.
  • Liu F, Liu J, Ji Y, et al. Microstructure, mechanical properties, and corrosion resistance of friction stir welded Mg-Al-Zn alloy thick plate joints, welding in the world. Le Soudage Dans Le Monde. 2020;65:229–241.
  • Ning G, Fu Y, Wang Y, et al. Microstructure and mechanical properties in friction stir welded 5A06 aluminum alloy thick plate. Mater Des. 2016;113:273–283.
  • Imam M, Sun Y, Fujii H, et al. Microstructural characteristics and mechanical properties of friction stir welded thick 5083 aluminum alloy. Metall Mater Trans A. 2017;48:208–229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.