293
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Realising carbide ultrafast homogenisation under pulsed electric current

, , &
Pages 689-702 | Received 13 Nov 2021, Accepted 25 Mar 2022, Published online: 18 Apr 2022

References

  • Kozo S. Ball and roller bearing steels born and evolved in the 20th century. Tokyo: The Iron and Steel Institute of Japan; 2000.
  • Bhadeshia HKDH. Steels for bearings. Prog Mater Sci. 2012;57(2):268–435.
  • Cao ZX, Liu TQ, Yu F, et al. Carburization induced extra-long rolling contact fatigue life of high carbon bearing steel. Int J Fatigue. 2020;131:105351.
  • Kral MV, Spanos G. Three-dimensional analysis of proeutectoid cementite precipitates. Acta Mater. 1999;47(2):711–724.
  • Han HB, Zhao XM, Zhao XY, et al. Effect of proeutectoid carbide on heredity in microstructure-mechanical properties and fatigue life of GCr15 bearing steel. Metall Res Technol. 2017;114(2):208.
  • Hecht MD, Webler BA, Picard YN. Digital image analysis to quantify carbide networks in ultrahigh carbon steels. Mater Charact. 2016;117:134–143.
  • Li ZX, Li CS, Zhang J, et al. Effects of annealing on carbides size and distribution and cold formability of 1.0C–1.5Cr bearing steel. Metall Mater Trans A. 2015;46(7):3220–3231.
  • Mishin Y, Herzig C. Grain boundary diffusion: recent progress and future research. Mater Sci Eng: A. 1999;260(1):55–71.
  • Lu K, Huo CF, He YR, et al. Grain boundary plays a key role in carbon diffusion in carbon irons revealed by a ReaxFF study. J Phys Chem C. 2018;122(40):23191–23199.
  • Verhoeven JD. The role of the divorced eutectoid transformation in the spheroidization of 52100 steel. Metall Mater Trans A. 2000;31(10):2431–2438.
  • Brown EL, Krauss G. Retained carbide distribution in intercritically austenitized 52100 steel. Metall Mater Trans A. 1986;17(1):31–36.
  • Spanos G, Kral MV. The proeutectoid cementite transformation in steels. Int Mater Rev. 2009;54(1):19–47.
  • Ande CK, Sluiter MHF. First-principles prediction of partitioning of alloying elements between cementite and ferrite. Acta Mater. 2010;58(19):6276–6281.
  • Tian YL, Kraft RW. Mechanisms of pearlite spheroidization. Metall Mater Trans A. 1987;18(8):1403–1414.
  • Han DX, Du LX, Zhang B, et al. Effect of deformation on deformation-induced carbides and spheroidization in bearing steel. J Mater Sci. 2019;54(3):2612–2627.
  • Hwang H, De Cooman BC. Influence of the initial microstructure on the spheroidization of SAE 52100 bearing steel. Steel Res Int. 2016;87(1):112–125.
  • Huang C, Zhang CL, Jiang L, et al. Isothermal heat treatment of a bearing steel for improved mechanical properties. J Alloys Compd. 2016;660:131–135.
  • Kim KH, Lee JS, Lee DL. Effect of silicon on the spheroidization of cementite in hypereutectoid high carbon chromium bearing steels. Met Mater Int. 2010;16(6):871–876.
  • Wang H, Li J, Zhang CL, et al. Effects of niobium on network carbide in high-carbon chromium bearing steel by in situ observation analysis. Ironmaking Steelmaking. 2021;48(2):155–160.
  • Sun Y, Wu D. Effect of ultra-fast cooling on microstructure of large section bars of bearing steel. J Iron Steel Res Int. 2009;16(5):61–65.
  • Zhang FC, Yang ZN. Development of and perspective on high-performance nanostructured bainitic bearing steel. Engineering. 2019;5(2):319–328.
  • Zhang XF, Yan LG. Regulating the non-metallic inclusions by pulsed electric current in molten metal. Acta Metall Sin. 2020;56(3):257–277.
  • Wang F, Qian DS, Hua L, et al. Voids healing and carbide refinement of cold rolled M50 bearing steel by electropulsing treatment. Sci Rep. 2019;9:11315.
  • Zhang JT, Zhao HL, Shi QY, et al. Fabrication of ultrafine grained high speed steel with satisfactory carbide dissolution by electropulsing treatment. ISIJ Int. 2019;59(11):2126–2129.
  • Hao JQ, Qin SY, Yan LG, et al. Breaking thermodynamic and kinetic barriers in superalloy homogenization process by electropulsing to improve mechanical properties. J Alloys Compd. 2021;873:159854.
  • Conrad H. Effects of electric current on solid state phase transformations in metals. Mater Sci Eng A. 2000;287(2):227–237.
  • Guo JD, Wang XL, Dai WB. Microstructure evolution in metals induced by high density electric current pulses. Mater Sci Technol. 2015;31(13A):1545–1554.
  • Hao JQ, Zhang HX, Zhang XF, et al. Accelerated carbon atoms diffusion in bearing steel using electropulsing to reduce spheroidization processing time and improve microstructure uniformity. Steel Res Int. 2020;91(7):2000041.
  • Konrad A. Integrodifferential finite element formulation of two-dimensional steady-state skin effect problems. IEEE Trans Magn. 1982;18(1):284–292.
  • Psyk V, Risch D, Kinsey BL, et al. Electromagnetic forming-A review. J Mater Process Technol. 2011;211(5):787–829.
  • Li CS, Li ZX, Ren JY, et al. Microstructure and properties of 1.0C–1.5Cr bearing steel in processes of hot rolling, spheroidization, quenching, and tempering. Steel Res Int. 2019;90(3):1800470.
  • Han DX, Du LX, Yao CX, et al. The evolution of deformation-induced carbides during divorced eutectoid transformation in GCr15 steels. J Mater Eng Perform. 2019;28(8):5277–5288.
  • Sharma M, Bleck W. Study of structural inheritance of austenite in Nb-microalloyed 18CrNiMo7–6 steel. Steel Res Int. 2018;89(8):1800107.
  • Jiang YB, Tang GY, Shek CH, et al. On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17Al12 phase in an aged Mg–9Al–1Zn alloy. Acta Mater. 2009;57(16):4797–4808.
  • Bohnenkamp U, Sandström R, Grimvall G. Electrical resistivity of steels and face-centered-cubic iron. J Appl Phys. 2002;92(8):4402–4407.
  • Qin RS, Bhowmik A. Computational thermodynamics in electric current metallurgy. Mater Sci Technol. 2015;31(13):1560–1563.
  • Dolinsky Y, Elperin T. Peculiarities of coexistence of phases with different electric conductivities under the influence of electric current. Mater Sci Eng: A. 2000;287(2):219–226.
  • Kang JH, Rivera Díaz del Castillo PEJ. Carbide dissolution in bearing steels. Comput Mater Sci. 2013;67:364–372.
  • Wan ZP, Shen JY, Wang T, et al. Effect of hot deformation parameters on the dissolution of γ′ precipitates for as-cast Ni-based superalloys. J Materi Eng Perform. 2022;31:1594–1606.
  • Porter DA, Easterling KE. Phase transformations in metals and alloys (Revised reprint). Boca Raton: CRC Press; 2009.
  • Landauer R, Woo JWF. Driving force in electromigration. Phys Rev B. 1974;10(4):1266–1271.
  • Liu Z, Liu B, Deng X, et al. Effect of current pulse on mechanism of superplastic deformation of 2091 Al–Li alloy. Acta Metall Sin. 2000;36(9):944–951.
  • Xuan XC. Joule heating in electrokinetic flow. Electrophoresis. 2008;29(1):33–43.
  • Kim MJ, Yoon S, Park S, et al. Elucidating the origin of electroplasticity in metallic materials. Appl Mater Today. 2020;21:100874.
  • Mehrer H, Bakker H, Bonzel HP, et al. Diffusion in solid metals and alloys. Berlin: Springer Berlin Heidelberg; 1990.
  • Kohlstedt DL, Williams WS. Investigation of the charge distribution in titanium carbide using electromigration. Phys Rev B. 1971;3(2):293–305.
  • Callister WD, Rethwisch DG. Callister's materials science and engineering. New Jersey: John Wiley & Sons Inc; 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.