1,420
Views
0
CrossRef citations to date
0
Altmetric
Literature Review Prize 2022 Candidate

Uncovering the carrier dynamics of AlInGaN semiconductors using time-resolved cathodoluminescence

ORCID Icon
Pages 780-793 | Received 03 Dec 2021, Accepted 02 Apr 2022, Published online: 28 Apr 2022

References

  • Nakamura S. Background story of the invention of efficient InGaN blue-light-emitting diodes (nobel lecture). Angew Chem Int Ed. 2015;54:7770–7788.
  • Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl Phys Lett. 1994;64:1687–1689.
  • Funato M, Ueda M, Kawakami Y, et al. Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11–22} GaN bulk substrates. Jpn J Appl Phys. 2006;45:L659–L662.
  • Nakamura S, Senoh M, Iwasa N, et al. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn J Appl Phys. 1995;34:L797–L799.
  • Nakamura S, Senoh M, Iwasa N, et al. Superbright green InGaN single-quantum-well-structure light-emitting diodes. Jpn J Appl Phys. 1995;34:L1332–L1335.
  • Kato H, Sugitani C. Wide gamut display using LED backlight – technical developments and actual products. NEC Tech J. 2006;1:75–79.
  • Mukai T, Yamada M, Nakamura S. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Jpn J Appl Phys. 1999;38:3976–3981.
  • Jain SC, Willander M, Narayan J, et al. III-nitrides: growth, characterization, and properties. J Appl Phys. 2000;87:965–1006.
  • Krames MR, Shchekin OB, Mueller-Mach R, et al. Status and future of high-power light-emitting diodes for solid-state lighting. J Disp Technol. 2007;3:160–175.
  • Ma J, Zhu X, Wong KM, et al. Improved GaN-based LED grown on silicon (111) substrates using stress/dislocation-engineered interlayers. 16th International Conference on Metalorganic Vapor Phase Epitaxy. 2013;370:265–268.
  • Orton JW, Foxon CT. Group III nitride semiconductors for short wavelength light-emitting devices. Rep Prog Phys. 1998;61:1–75.
  • Kavehrad M. Sustainable energy-efficient wireless applications using light. IEEE Commun Mag. 2010;48:66–73.
  • Nishimura K, Shimizu K, Shibahara Y, et al. 59.1: invited paper: on the recent progress of LED lighting in japan. SID Symposium Digest of Technical Papers. 2010;41:878–881.
  • Nakamura S, Senoh M, Nagahama S-I, et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn J Appl Phys. 1996;35:L74–L76.
  • Jani O, Ferguson I, Honsberg C, et al. Design and characterization of GaNInGaN solar cells. Appl Phys Lett. 2007;91:132117.
  • Yang H, Ma Z, Jiang Y, et al. The enhanced photo absorption and carrier transportation of InGaN/GaN quantum wells for photodiode detector applications. Sci Rep. 2017;7:43357.
  • Strite S, Morkoç H. GaN, AlN, and InN: a review. J Vacuum Sci Technol B Microelectron Nanometer Struct Process Measure Phenomena. 1992;10:1237–1266.
  • Feneberg M, Leute RAR, Neuschl B, et al. High-excitation and high-resolution photoluminescence spectra of bulk AlN. Phys Rev B. 2010;82:075208.
  • Davydov V, Klochikhin A, Seisyan R, et al. Absorption and emission of hexagonal InN. evidence of narrow fundamental band gap. Phys Status Solidi B. 2002;229:r1–r3.
  • Nishida T, Saito H, Kobayashi N. Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN. Appl Phys Lett. 2001;79:711–712.
  • Taniyasu Y, Kasu M, Makimoto T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature. 2006;441:325–328.
  • Mondal RK, Adhikari S, Chatterjee V, et al. Recent advances and challenges in AlGaN-based ultra-violet light emitting diode technologies. Mater Res Bull. 2021;140:111258.
  • Bell A, Christen J, Bertram F, et al. Localization versus carrier-screening effects in InGaN quantum wells – A time-resolved cathodoluminescence study. AIP Conf Proc. 2005;772:301–302.
  • Jungclaus J, Spende H, Hille P, et al. Time-resolved cathodoluminescence investigations of AlN:Ge/GaN nanowire structures. Nano Express. 2021;2:034001.
  • Zhang X, Rich DH, Kobayashi JT, et al. Carrier relaxation and recombination in an InGaN/GaN quantum well probed with time-resolved cathodoluminescence. Appl Phys Lett. 1998;73:1430–1432.
  • Corfdir P, Ristić J, Lefebvre P, et al. Low-temperature time-resolved cathodoluminescence study of exciton dynamics involving basal stacking faults in a-plane GaN. Appl Phys Lett. 2009;94:201115.
  • Zhu T, Gachet D, Tang F, et al. Local carrier recombination and associated dynamics in m-plane InGaN/GaN quantum wells probed by picosecond cathodoluminescence. Appl Phys Lett. 2016;109:232103.
  • Miwa H, Gong X, Hashimoto A, et al. Nanoscale photoluminescence mapping for MOVPE InN films using scanning near-field optical microscopy (SNOM). Sci Technol Adv Mater. 2006;7:282–285.
  • Liuolia V, Pinos A, Marcinkevičius S, et al. Carrier localization in m-plane InGaN/GaN quantum wells probed by scanning near field optical spectroscopy. Appl Phys Lett. 2010;97:151106.
  • Feng Z, Jiang X, Lee Y. Green light-emitting diodes with InGaN/GaN multiple quantum well structures: Time-resolved photoluminescence, emission dynamics and related studies.2016 5th International Symposium on Next-Generation Electronics2016.
  • Li C, Stokes E, Hefti R, et al. PL spatial variation in InGaN/GaN MQWs studied by confocal microscopy and TRPL spectroscopy. ECS J Solid State Sci Technol. 2013;2:R262–R266.
  • Onuma T, Kagamitani Y, Hazu K, et al. Femtosecond-laser-driven photoelectron-gun for time-resolved cathodoluminescence measurement of GaN. Rev Sci Instrum. 2012;83:043905.
  • Goldstein JI, Newbury DE, Echlin P, et al. The SEM and its modes of operation. In: Goldstein JI, Newbury DE, Echlin P, Joy DC, Lyman CE, Lifshin E, Sawyer L, and Michael JR, editors. Scanning electron microscopy and X-ray microanalysis. 3rd ed. Boston, MA: Springer US; 2003. p. 21–60.
  • Coenen T, Haegel NM. Cathodoluminescence for the 21st century: learning more from light. Appl Phys Rev. 2017;4:031103.
  • Ferreyra RA, Zhu C, Teke A, et al. Group III Nitrides. . In: Kasap S, Capper P, editors. Springer Handbook of Electronic and Photonic Materials. Springer, Cham; 2017. p. 1.
  • Frentrup M, Lee LY, Sahonta S-L, et al. X-ray diffraction analysis of cubic zincblende III-nitrides. J Phys D: Appl Phys. 2017;50:433002.
  • Ambacher O, Majewski J, Miskys C, et al. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J Phys: Condens Matter. 2002;14:3399–3434.
  • Schubert MF, Chhajed S, Kim JK, et al. Effect of dislocation density on efficiency droop in GaInNGaN light-emitting diodes. Appl Phys Lett. 2007;91:231114.
  • Yam FK. Gallium nitride: an overview of structural defects. In: Low LL and Oh SA, editors. Optoelectronics. Rijeka: IntechOpen; 2011. Ch. 4.
  • Suemitsu M, Filimonov S. Understanding crystal growth mechanisms in silicon–germanium (SiGe) nanostructures. In: Shiraki Yasuhiro, Usami Noritaka, editors. Silicon–Germanium (SiGe) Nanostructures.Woodhead Publishing; 2011. p. 45–71.
  • Zubialevich VZ, McLaren M, Pampili P, et al. Reduction of threading dislocation density in top-down fabricated GaN nanocolumns via their lateral overgrowth by MOCVD. J Appl Phys. 2020;127:025306.
  • Johnson M, Yu Z, Brown J, et al. A critical comparison between MOVPE and MBE growth of III-V nitride semiconductor materials for opto-electronic device applications. MRS Int J Nitride Semicond Res. 1999;4:594–599.
  • Dumke WP. Spontaneous radiative recombination in semiconductors. Phys Rev. 1957;105:139–144.
  • Wannier GH. The structure of electronic excitation levels in insulating crystals. Phys Rev. 1937;52:191–197.
  • Muth JF, Lee JH, Shmagin IK, et al. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl Phys Lett. 1997;71:2572–2574.
  • Götz W, Johnson N, Chen C, et al. Activation energies of Si donors in GaN. Appl Phys Lett. 1996;68:3144–3146.
  • Lee I-H, Polyakov AY, Smirnov NB, et al. Point defects controlling non-radiative recombination in GaN blue light emitting diodes: insights from radiation damage experiments. J Appl Phys. 2017;122:115704.
  • Xie Z, Sui Y, Buckeridge J, et al. Donor and acceptor characteristics of native point defects in GaN. J Phys D Appl Phys. 2019;52:335104.
  • Shockley W, Read WT. Statistics of the recombinations of holes and electrons. Phys Rev. 1952;87:835–842.
  • Haug A. Auger recombination in direct-gap semiconductors: band-structure effects. J Phys C Solid State Phys. 1983;16:4159–4172.
  • Meyer J, Liu R, Schaller RD, et al. Systematic study of shockley-read-hall and radiative recombination in GaN on Al2O3, freestanding GaN, and GaN on Si. J Phys Photon. 2020;2:035003.
  • Reshchikov MA. Chapter Nine - Point Defects in GaN. In: Romano Lucia, Jagadish Chennupati, Privitera Vittorio, editors. Semiconductors and Semimetals Vol. 91 Elsevier; 2015. p. 315–367.
  • Yacobi BG, Holt DB. Cathodoluminescence scanning electron microscopy of semiconductors. J Appl Phys. 1986;59:R1–R24.
  • Meuret S, Tizei LHG, Houdellier F, et al. Time-resolved cathodoluminescence in an ultrafast transmission electron microscope. Appl Phys Lett. 2021;119:062106.
  • Phillips MR. Cathodoluminescence microscopy and spectroscopy of opto-Electronic materials. Microchim Acta. 2006;155:51–58.
  • Kanaya K, Okayama S. Penetration and energy-loss theory of electrons in solid targets. J Phys D: Appl Phys. 1972;5:43–58.
  • Ishikawa Y, Tashiro M, Hazu K, et al. Local lifetime and luminescence efficiency for the near-band-edge emission of freestanding GaN substrates determined using spatio-time-resolved cathodoluminescence. Appl Phys Lett. 2012;101:212106.
  • Modak S, Chernyak L, Xian M, et al. Impact of electron injection on carrier transport and recombination in unintentionally doped GaN. J Appl Phys. 2020;128:085702.
  • Fonoberov VA, Balandin AA. Origin of ultraviolet photoluminescence in ZnO quantum dots: confined excitons versus surface-bound impurity exciton complexes. Appl Phys Lett. 2004;85:5971–5973.
  • Bell A, Christen J, Bertram F, et al. Localization versus field effects in single InGaN quantum wells. Appl Phys Lett. 2004;84:58–60.
  • Merano M, Sonderegger S, Crottini A, et al. Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. Nature. 2005;438:479–482.
  • Merano M, Sonderegger S, Crottini A, et al. Time-resolved cathodoluminescence of InGaAs/AlGaAs tetrahedral pyramidal quantum structures. Appl Phys B. 2006;84:343–350.
  • Ura K, Fujioka H, Hosokawa T. Picosecond pulse stroboscopic scanning electron microscope. J Electron Microsc (Tokyo). 1978;27:247–252.
  • Moerland RJ, Weppelman IGC, Garming MWH, et al. Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states. Opt Express. 2016;24:24760–24772.
  • Meuret S, Solà Garcia M, Coenen T, et al. Complementary cathodoluminescence lifetime imaging configurations in a scanning electron microscope. Ultramicroscopy. 2019;197:28–38.
  • Chichibu S, Ishikawa Y, Hazu K, et al. Spatio-time-resolved cathodoluminescence studies of wide bandgap group-III nitride semiconductors. Jpn J Appl Phys. 2019, DOI:10.7567/1347-4065/ab5ef4.
  • Hangleiter A. Recombination dynamics in GaInN/GaN quantum wells. Semicond Sci Technol. 2019;34:073002.
  • Weiss TP, Bissig B, Feurer T, et al. Bulk and surface recombination properties in thin film semiconductors with different surface treatments from time-resolved photoluminescence measurements. Sci Rep. 2019;9:5385.
  • Wang T. Topical review: development of overgrown semi-polar GaN for high efficiency green/yellow emission. Semicond Sci Technol. 2016;31:093003.
  • Metzner S, Bertram F, Karbaum C, et al. Spectrally and time-resolved cathodoluminescence microscopy of semipolar InGaN SQW on (11–22) and (10–11) pyramid facets. Phys Status Solidi B. 2011;248:632–637.
  • Bai J, Wang T, Sakai S. Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures. J Appl Phys. 2000;88:4729–4733.
  • Shapiro NA, Perlin P, Kisielowski C, et al. The effects of indium concentration and well-thickness on the mechanisms of radiative recombination in InxGa1xN quantum wells. MRS Internet J Nitride Semicond Res. 2020;5:2.
  • He S, Xu Y, Qi L, et al. Growth of low-threading-dislocation-density GaN on graphene by hydride vapor phase epitaxy. Jpn J Appl Phys. 2017;56:030308.
  • Dıaz-Guerra C, Piqueras J, Castaldini A, et al. Time-resolved cathodoluminescence and photocurrent study of the yellow band in Si-doped GaN. J Appl Phys. 2003;94:2341–2346.
  • Redaelli L, Mukhtarova A, Valdueza-Felip S, et al. Effect of the quantum well thickness on the performance of InGaN photovoltaic cells. Appl Phys Lett. 2014;105:131105.
  • Yoshizumi Y, Yoshida T, Kyono T. Advantages of employing the freestanding GaN substrates with low dislocation density for white light-emitting diodes. SEI Tech Rev. 2012:110–115.
  • Wei T, Zhang L, Ji X, et al. Investigation of efficiency and droop behavior comparison for InGaN/GaN super wide-well light emitting diodes grown on different substrates. IEEE Photonics J. 2014;6:1–10.
  • Wang Q, Bai J, Gong YP, et al. Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods. J Phys D Appl Phys. 2011;44:395102.
  • Ley R, Chan L, Shapturenka P, et al. Strain relaxation of InGaN/GaN multi-quantum well light emitters via nanopatterning. Opt Express. 2019;27:30081–30089.
  • Avit G, Robin Y, Liao Y, et al. Strain-induced yellow to blue emission tailoring of axial InGaN/GaN quantum wells in GaN nanorods synthesized by nanoimprint lithography. Sci Rep. 2021;11:6754.
  • Corfdir P, Simeonov D, Feltin E, et al. Time-resolved cathodoluminescence on polychromatic light emitting (In, Ga)N quantum wells grown on (11-22) GaN facets. Phys Status Solidi C. 2011;8:1394–1397.
  • Della Sala F, Di Carlo A, Lugli P, et al. Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures. Appl Phys Lett. 1999;74:2002–2004.
  • Weng G, Zhao W-R, Chen S, et al. Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green. Nanoscale Res Lett. 2015;10.
  • Chichibu S, Azuhata T, Sota T, et al. Spontaneous emission of localized excitons in InGaN single and multiquantum well structures. Appl Phys Lett. 1996;69:4188–4190.
  • Oliver RA, Bennett SE, Zhu T, et al. Microstructural origins of localization in InGaN quantum wells. J Phys D: Appl Phys. 2010;43:354003.
  • Akasaka T, Gotoh H, Kobayashi Y, et al. InGaN quantum wells with small potential fluctuation grown on InGaN underlying layers. Appl Phys Lett. 2006;89:101110.
  • Badcock TJ, Dawson P, Davies MJ, et al. Low temperature carrier redistribution dynamics in InGaN/GaN quantum wells. J Appl Phys. 2014;115:113505.
  • Arteev DS, Sakharov AV, Zavarin EE, et al. Investigation of statistical broadening in InGaN alloys. J Phys: Conf Ser. 2018;1135:012050.
  • Sonderegger S, Feltin E, Merano M, et al. High spatial resolution picosecond cathodoluminescence of InGaN quantum wells. Appl Phys Lett. 2006;89:232109.
  • Jiao QQ, Chen ZZ, Ma J, et al. Capability of GaN based micro-light emitting diodes operated at an injection level of kA/cm2. Opt Express. 2015;23:16565–16574.
  • Hou X, Fan S, Iida D, et al. Photoluminescence of InGaN-based red multiple quantum wells. Opt Express. 2021;29:30237–30243.
  • Rudloff D, Bertram F, Riemann T, et al. Direct imaging of the crystalline and chemical nanostructure of GA, IN-nitrides by highly spatially-, spectrally- and time-resolved cathodoluminescence. Solid State Phenom. 1998;63–64:221–228.
  • Corfdir P, Lefebvre P, Balet L, et al. Exciton recombination dynamics in a-plane (Al, Ga)N/GaN quantum wells probed by picosecond photo and cathodoluminescence. J Appl Phys. 2010;107:043524.
  • Fischer AM, Srinivasan S, Ponce FA, et al. Time-resolved cathodoluminescence of Mg-doped GaN. Appl Phys Lett. 2008;93:151901.
  • Thomas DG, Hopfield JJ, Augustyniak WM. Kinetics of radiative recombination at randomly distributed donors and acceptors. Phys Rev. 1965;140:A202–A220.
  • Dıaz-Guerra C, Piqueras J, Cavallini A. Time-resolved cathodoluminescence assessment of deep-level transitions in hydride-vapor-phase-epitaxy GaN. Appl Phys Lett. 2003;82:2050–2052.