163
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of strontium on microstructure, mechanical, and biological responses of Mg–Al–Zn–Sr alloys

, , &
Pages 1134-1150 | Received 07 Jan 2022, Accepted 19 Apr 2022, Published online: 12 May 2022

References

  • Seelig MG. A study of magnesium wire as an absorbable suture and ligature material. Arch Surg. 1924;8:669–680. doi:10.1001/archsurg.1924.01120050210011.
  • Zeng R, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater. 2008;10(8):B3–B14. doi:10.1002/adem.200800035.
  • Xu W, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy. Nat Mater 2015;14(12):1229–1235. doi:10.1038/nmat4435.
  • Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30(4):484–498. doi:10.1016/j.biomaterials.2008.10.021.
  • Wong HM, Chu P, Cheung K, et al. A novel magnesium-based bone substitute to stimulate in vivo bone formation for orthopaedic implantation. Orthop Proc. 2014;96-B:92, doi:10.1302/1358-992X.96BSUPP_11.CORS2013-092.
  • Fajardo S, Bosch J, Frankel GS. Anomalous hydrogen evolution on AZ31, AZ61 and AZ91 magnesium alloys in unbuffered sodium chloride solution. Corros Sci 2019;146:163–171. doi:10.1016/j.corsci.2018.10.039.
  • Song G, StJohn D. Corrosion performance of magnesium alloys MEZ and AZ91. Int J Cast Met Res. 2000;12(6):327–334. doi:10.1080/13640461.2000.11819371.
  • Zeng R-C, Qi W-C, Zhang F, et al. In vitro corrosion of pure magnesium and AZ91 alloy-the influence of thin electrolyte layer thickness. Regen Biomater. 2016;3:49–56. doi:10.1093/rb/rbv028.
  • Kubota K, Mabuchi M, Higashi K. Review processing and mechanical properties of fine-grained magnesium alloys. J Mater Sci. 1999;34(10):2255–2262. doi:10.1023/A:1004561205627.
  • Deschamps A, Livet F, Bréchet Y. Influence of predeformation on aging in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties. Acta Mater. 1998;47(1):281–292. doi:10.1016/S1359-6454(98)00293-6.
  • Gupta M, Ling S N M. Magnesium, magnesium alloys, and magnesium composites. Wiley; 2011. https://www.wiley.com/en-us/Magnesium%2C+Magnesium+Alloys%2C+and+Magnesium+Composites-p-9780470494172.
  • Wang H, Shi Z. In vitro biodegradation behavior of magnesium and magnesium alloy. J Biomed Mater Res B Appl Biomater. 2011;98(2):203–209. doi:10.1002/jbm.b.31769.
  • Ding Y, Wen C, Hodgson P, et al. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. J Mater Chem B. 2014;2(14):1912–1933. doi:10.1039/C3TB21746A.
  • Vennimalai Rajan A, Mathalai Sundaram C, Vembathu Rajesh A. Mechanical and morphological investigation of bio-degradable magnesium AZ31 alloy for an orthopedic application. Mater Today Proc. 2020;21:272–277. doi:10.1016/j.matpr.2019.05.429.
  • Perumal G, Ramasamy B, Nandkumar A M, et al. Bilayer nanostructure coated AZ31 magnesium alloy implants: in vivo reconstruction of critical-sized rabbit femoral segmental bone defect, nanomedicine nanotechnology. Biol Med. 2020;29:102232, doi:10.1016/j.nano.2020.102232.
  • Willhite CC, Karyakina NA, Yokel RA, et al. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminium, aluminium oxides, aluminium hydroxide and its soluble salts. Crit Rev Toxicol. 2014;44(Suppl 4):1–80. doi:10.3109/10408444.2014.934439.
  • Klotz K, Weistenhöfer W, Neff F, et al. The health effects of aluminum exposure. Dtsch Arztebl Int. 2017;114:653–659. doi:10.3238/arztebl.2017.0653.
  • Jiang DM, Cao ZY, Sun X, et al. Effect of yttrium addition on microstructure and mechanical properties of Mg–Zn–Ca alloy. Mater Res Innov. 2013;17(sup1):33–38. doi:10.1179/1432891713Z.000000000194.
  • Nagata M, Lönnerdal B. Role of zinc in cellular zinc trafficking and mineralization in a murine osteoblast-like cell line. J Nutr Biochem. 2011;22(2):172–178. doi:10.1016/j.jnutbio.2010.01.003.
  • Almoudi MM, Hussein AS, Abu Hassan MI, et al. A systematic review on antibacterial activity of zinc against Streptococcus mutans. Saudi Dent J. 2018;30(4):283–291. doi:10.1016/j.sdentj.2018.06.003.
  • Fan Y, Wu GH, Zhai CQ. Effect of strontium on mechanical properties and corrosion resistance of AZ91D. Mater Sci Forum. 2007: 567–570. doi:10.4028/www.scientific.net/MSF.546-549.567.
  • Lee YC, Dahle AK, StJohn DH. The role of solute in grain refinement of magnesium. Metall Mater Trans A. 2000;31(11):2895–2906. doi:10.1007/BF02830349.
  • Gorustovich AA, Steimetz T, Cabrini RL, et al. Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res Part A. 2010;92A(1):232–237. doi:10.1002/jbm.a.32355.
  • Brar HS, Wong J, Manuel MV. Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials. J Mech Behav Biomed Mater. 2012;7:87–95. doi:10.1016/j.jmbbm.2011.07.018.
  • Cheng M, Chen J, Yan H, et al. Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg-5Zn based alloy system. J Alloys Compd. 2017;691:95–102. doi:10.1016/j.jallcom.2016.08.164.
  • Bornapour M, Celikin M, Cerruti M, et al. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Mater Sci Eng C. 2014;35:267–282. doi:10.1016/j.msec.2013.11.011.
  • Sadeghi A, Hasanpur E, Bahmani A, et al. Corrosion behaviour of AZ31 magnesium alloy containing various levels of strontium. Corros Sci. 2018;141:117–126. doi:10.1016/j.corsci.2018.06.018.
  • Gil-Santos A, Marco I, Moelans N, et al. Microstructure and degradation performance of biodegradable Mg-Si-Sr implant alloys. Mater Sci Eng C. 2017;71:25–34. doi:10.1016/j.msec.2016.09.056.
  • Zeng X, Wang Y, Ding W, et al. Effect of strontium on the microstructure, mechanical properties, and fracture behavior of AZ31 magnesium alloy. Metall Mater Trans A. 2006;37(4):1333–1341. doi:10.1007/s11661-006-1085-8.
  • Chen G, Peng X, Fan P, et al. Effects of Sr and Y on microstructure and corrosion resistance of AZ31 magnesium alloy. Trans Nonferrous Met Soc China. 2011;21(4):725–731. doi:10.1016/S1003-6326(11)60772-3.
  • Sadeghi A, Pekguleryuz M. Microstructural investigation and thermodynamic calculations on the precipitation of Mg–Al–Zn–Sr alloys. J Mater Res. 2011;26(7):896–903. doi:10.1557/jmr.2010.75.
  • Peng Q, Li X, Ma N, et al. Effects of backward extrusion on mechanical and degradation properties of Mg–Zn biomaterial. J Mech Behav Biomed Mater. 2012;10:128–137. doi:10.1016/j.jmbbm.2012.02.024.
  • Yang M, Pan F, Cheng R, et al. Effects of Al-10Sr master alloys on grain refinement of AZ31 magnesium alloy. Trans Nonferrous Met Soc China. 2008;18(1):52–58. doi:10.1016/S1003-6326(08)60010-2.
  • Klinger M. More features, more tools, more CrysTBox. J Appl Crystallogr. 2017;50:1226–1234. doi:10.1107/S1600576717006793.
  • Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater. 1999;1:11–33. doi:10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N.
  • Mandal M, Moon AP, Deo G, et al. Corrosion behavior of Mg–2.4Zn alloy micro-alloyed with Ag and Ca. Corros Sci. 2014;78:172–182. doi:10.1016/j.corsci.2013.09.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.