215
Views
0
CrossRef citations to date
0
Altmetric
Review

Simple shear extrusion as an efficient severe plastic deformation technique: a review

ORCID Icon &
Pages 259-282 | Received 15 Apr 2022, Accepted 30 Jul 2022, Published online: 25 Aug 2022

References

  • Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51(7):881–981.
  • Bagherpour E, Reihanian M, Pardis N, et al. Ten years of severe plastic deformation (SPD) in Iran, part I: equal-channel angular pressing (ECAP). Iran J Mater Form. 2018;5(1):71–113.
  • Horita Z, Furukawa M, Nemoto M, et al. Development of fine grained structures using severe plastic deformation. Mater Sci Technol. 2000;16(11–12):1239–1245.
  • Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci. 2008;53(6):893–979.
  • Reihanian M, Bagherpour E, Ebrahimi R, et al. Ten years of severe plastic deformation (SPD) in Iran, part II: accumulative roll bonding (ARB). Iran J Mater Form. 2018;5(January):1–25.
  • Ghalehbandi SM, Malaki M, Gupta M. Accumulative roll bonding: a review. Appl Sci. 2019;9(17):3627.
  • Bagherpour E, Pardis N, Reihanian M, et al. An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications. Int J Adv Manuf Technol. 2019;100(5–8):1647–1694.
  • Hamad K, Ko YG. Continuous differential speed rolling for grain refinement of metals: processing, microstructure, and properties. Crit Rev Solid State Mater Sci. 2019;44(6):470–525.
  • Patel V, Li W, Vairis A, et al. Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement. Crit Rev Solid State Mater Sci. 2019;44(5):378–426.
  • Faraji G, Kim HS. Review of principles and methods of severe plastic deformation for producing ultrafine-grained tubes. Mater Sci Technol (United Kingdom). 2017;33(8):905–923.
  • Valiev RZ, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation. J Met. 2006;58(4):33–39.
  • Edalati K, Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A. 2016;652:325–352.
  • Pardis N, Ebrahimi R, Kim HS. Equivalent strain at large shear deformation: theoretical, numerical and finite element analysis. J Appl Res Technol. 2017;15(5):442–448.
  • Segal V. Review: modes and processes of severe plastic deformation (SPD). Materials (Basel). 2018;11(7):1175.
  • Segal VM. Severe plastic deformation: simple shear versus pure shear. Mater Sci Eng A. 2002;338(1–2):331–344.
  • Beygelzimer Y, Orlov D, Varyukhin V. “A new severe plastic deformation method: twist extrusion”. In: Ultrafine grained materials II. Hoboken (NJ): John Wiley & Sons, Inc.; 2013. p. 297–304.
  • Kim JG, Latypov M, Pardis N, et al. Finite element analysis of the plastic deformation in tandem process of simple shear extrusion and twist extrusion. Mater Des. 2015;83:858–865.
  • Pardis N, Ebrahimi R. Deformation behavior in simple shear extrusion (SSE) as a new severe plastic deformation technique. Mater Sci Eng A. 2009;527(1–2):355–360.
  • Tork NB, Pardis N, Ebrahimi R. Investigation on the feasibility of room temperature plastic deformation of pure magnesium by simple shear extrusion process. Mater Sci Eng A. 2013;560:34–39.
  • Tork NB, Razavi SH, Saghafian H, et al. Strain-rate sensitivity of Mg–Gd alloys after extrusion and simple shear extrusion. Mater Sci Technol (United Kingdom) 2017;33(18):2244–2252.
  • Bayat Tork N, Razavi S, Saghafian H, et al. Superplasticity of a fine-grained Mg–1.5 wt% Gd alloy after severe plastic deformation. Iran J Mater Form. 2016;3(1):65–74.
  • Bayat Tork N, Saghafian H, Razavi SH, et al. Microstructure and texture characterization of Mg-Al and Mg-Gd binary alloys processed by simple shear extrusion. J Mater Res Technol. 2019;8(1):1288–1299.
  • Bagherpour E, Reihanian M, Ebrahimi R. On the capability of severe plastic deformation of twining induced plasticity (TWIP) steel. Mater Des. 2012;36:391–395.
  • Bagherpour E, Mortezaei S, Ebrahimi R, et al. On the production of severely deformed workpieces in large scales: a step towards industrialization. J Met. 2019;71(12):4424–4435.
  • Bagherpour E, Ebrahimi R, Qods F. An analytical approach for simple shear extrusion process with a linear die profile. Mater Des. 2015;83:368–376.
  • Abbasi Z, Ebrahimi R. Impact of partial recrystallization on the mechanical properties of severely deformed copper. Mater Sci Eng A. 2016;651:341–345.
  • Bagherpour E, Qods F, Ebrahimi R, et al. Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): role of shear reversal. Mater Sci Eng A. 2016;666:324–338.
  • Bagherpour E, Qods F, Ebrahimi R, et al. Microstructure quantification of ultrafine grained pure copper fabricated by simple shear extrusion (SSE) technique. Mater Sci Eng A. 2016;674:221–231.
  • Sheikh H, Ebrahimi R, Bagherpour E. Crystal plasticity finite element modeling of crystallographic textures in simple shear extrusion (SSE) process. Mater Des. 2016;109:289–299.
  • Sheikh H, Ebrahimi R. Modeling the effect of strain reversal on grain refinement and crystallographic texture during simple shear extrusion. Int J Solids Struct. 2017;126–127:175–186.
  • Ebrahimi R, Rezvani A, Bagherpour E. Circular simple shear extrusion as an alternative for simple shear extrusion technique for producing bulk nanostructured materials. Procedia Manuf. 2018;15:1502–1508.
  • Rezvani A, Bagherpour E, Ebrahimi R. Circular simple shear extrusion as an alternative to simple shear extrusion technique. Iran J Sci Technol - Trans Mech Eng. 2020;44(1):193–201.
  • Rezvani A, Ebrahimi R. Investigation on the deformation behavior and strain distribution of commercially pure aluminum after circular simple shear extrusion. J Ultrafine Grained Nanostructured Mater. 2019;52(1):32–42.
  • Rosochowski A. Severe plastic deformation technology. Encyclopedia Mater: Sci Technol. 2017: 1–8.
  • Li J, Li F, Li P, et al. Micro-structural evolution in metals subjected to simple shear by a particular severe plastic deformation method. J Mater Eng Perform. 2015;24(8):2944–2956.
  • Machácková A. Decade of twist channel angular pressing: a review. Materials (Basel). 2020;13(7):1725.
  • Rahimi F, Eivani AR, Jafarian HR, et al. Effect of pure shear strain on mechanical properties and microstructural evolution. Mater Sci Eng A. 2017;679:133–142.
  • Segal V. Equal-channel angular extrusion (ECAE): from a laboratory curiosity to an industrial technology. Metals (Basel). 2020;10(2):244.
  • Wang CP, Li FG, Lei W, et al. Review on modified and novel techniques of severe plastic deformation. Sci China Technol Sci. 2012;55(9):2377–2390.
  • Edalati K, Bachmaier A, Beloshenko VA, et al. Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Mater Res Lett. 2022;10(4):163–256.
  • Pramono A, Kommel L, Kollo L, et al. Hot and cold of pressing effect on ECAP-parallel channel composite based on Al/ANF material. Adv Mater Res. 2015;1123:343–347.
  • Raab GI. Plastic flow at equal channel angular processing in parallel channels. Mater Sci Eng A. 2005;410–411:230–233.
  • Pramono A, Dhoska K, Markja I, et al. Impact pressure on mechanical properties of aluminum based composite by ECAP-parallel channel. Pollack Period. 2019;14(1):67–74.
  • Beygelzimer Y, Varyukhin V, Synkov S, et al. Useful properties of twist extrusion. Mater Sci Eng A. 2009;503(1–2):14–17.
  • Nagasekhar AV, Tick-Hon Y, Li S, et al. Effect of acute tool-angles on equal channel angular extrusion/pressing. Mater Sci Eng A. 2005;410–411:269–272.
  • Yoon SC, Kim HS. Finite element analysis of the effect of the inner corner angle in equal channel angular pressing. Mater Sci Eng A. 2008;490(1–2):438–444.
  • Lapovok RY. The role of back-pressure in equal channel angular extrusion. J Mater Sci. 2005;40(2):341–346.
  • Beygelzimer Y, Reshetov A, Synkov S, et al. Kinematics of metal flow during twist extrusion investigated with a new experimental method. J Mater Process Technol. 2009;209(7):3650–3656.
  • Pardis N, Ebrahimi R. Different processing routes for deformation via simple shear extrusion (SSE). Mater Sci Eng A. 2010;527(23):6153–6156.
  • Langdon TG. The principles of grain refinement in equal-channel angular pressing. Mater Sci Eng A. 2007;462(1–2):3–11.
  • Furukawa M, Horita Z, Langdon TG. Factors influencing the shearing patterns in equal-channel angular pressing. Mater Sci Eng A. 2002;332(1–2):97–109.
  • Han WZ, Zhang ZF, Wu SD, et al. Influences of crystallographic orientations on deformation mechanism and grain refinement of Al single crystals subjected to one-pass equal-channel angular pressing. Acta Mater 2007;55(17):5889–5900.
  • Xue Q, Beyerlein IJ, Alexander DJ, et al. Mechanisms for initial grain refinement in OFHC copper during equal channel angular pressing. Acta Mater 2007;55(2):655–668.
  • Mohamed FA. A dislocation model for the minimum grain size obtainable by milling. Acta Mater 2003;51(14):4107–4119.
  • Zhao YH, Zhu YT, Liao XZ, et al. Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation. Mater Sci Eng A. 2007;463(1–2):22–26.
  • Talebanpour B, Ebrahimi R, Janghorban K. Microstructural and mechanical properties of commercially pure aluminum subjected to dual equal channel lateral extrusion. Mater Sci Eng A. 2009;527(1–2):141–145.
  • Lee DN. Upper-bound solution of channel angular deformation. Scr Mater. 2000;43(2):115–118.
  • Tóth LS, Lapovok R, Hasani A, et al. Non-equal channel angular pressing of aluminum alloy. Scr Mater. 2009;61(12):1121–1124.
  • Sayari F, Roumina R, Mahmudi R, et al. Comparison of the effect of ECAP and SSE on microstructure, texture, and mechanical properties of magnesium. J Alloys Compd. 2022;908:164407.
  • Rezaei A, Mahmudi R, Cayron C, et al. Microstructural evolution and superplastic behavior of a fine-grained Mg−Gd−Y−Ag alloy processed by simple shear extrusion. Mater Sci Eng A. 2021;806:140803.
  • Chaudry UM, Tekumalla S, Gupta M, et al. Designing highly ductile magnesium alloys: current status and future challenges. Crit Rev Solid State Mater Sci. 2021: 1–88.
  • Edalati K. Review on recent advancements in severe plastic deformation of oxides by high-pressure torsion (HPT). Adv Eng Mater. 2019;21(1):1800272.
  • Zabihi M, Emadoddin E, Qods F. Processing of Al/Al2O3 composite using simple shear extrusion (SSE) manufactured by powder metallurgy (PM). Met Mater Int. 2020;26(1):1–13.
  • Zabihi M, Qods F, Emadoddin E. The effect of simple shear extrusion on the texture and porosity content of Al/Al2O3 composites. Iran J Mater Form. 2022;9(2.
  • Orlov D, Todaka Y, Umemoto M, et al. Role of strain reversal in grain refinement by severe plastic deformation. Mater Sci Eng A. 2009;499(1–2):427–433.
  • Bagherpour E, Qods F, Ebrahimi R, et al. “Strain reversal in simple shear extrusion (SSE) processing: microstructure investigations and mechanical properties”. In: AIP conference proceedings. 2018. p. 020007.
  • Fukuda Y, Oh-ishi K, Furukawa M, et al. Influence of crystal orientation on ECAP of aluminum single crystals. Mater Sci Eng A. 2006;420(1–2):79–86.
  • Bagherpour E, Qods F, Ebrahimi R, et al. Microstructure and texture inhomogeneity after large non-monotonic simple shear strains: achievements of tensile properties. Metals (Basel). 2018;8(8):583.
  • Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals. CIRP Ann – Manuf Technol. 2008;57(2):716–735.
  • Zhao YH, Liao XZ, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys. Adv Mater. 2006;18(17):2280–2283.
  • Valiev RZ, Alexandrov IV, Zhu YT, et al. Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res. 2002;17(1):5–8.
  • Gubicza J, Chinh NQ, Lábár JL, et al. Correlation between microstructure and mechanical properties of severely deformed metals. J Alloys Compd. 2009;483(1–2):271–274.
  • Wang Y, Chen M, Zhou F, et al. High tensile ductility in a nanostructured metal. Nature. 2002;419(6910):912–915.
  • Abbasi Z. Study of static recrystallization of severely deformed copper and generation of nanostructure material with bimodal grain size. Shiraz University; 2013.
  • Bagherpour E, Reihanian M, Ebrahimi R, et al. Role of strain reversal in microstructure and texture of pure al during non-monotonic simple shear straining. Crystals (Basel). 2020;10(10):1–15.
  • Henning M, Vehoff H. Statistical size effects based on grain size and texture in thin sheets. Mater Sci Eng A. 2007;452–453:602–613.
  • Xu J, Zhu X, Shan D, et al. Effect of grain size and specimen dimensions on micro-forming of high purity aluminum. Mater Sci Eng A. 2015;646:207–217.
  • Rahimzadeh Lotfabad F, Ebrahimi R. Combined Hill-Taylor theory: theoretical, experimental and finite element study. J Ultrafine Grained Nanostructured Mater. 2021;54(2):228–243.
  • Rahimzadeh Lotfabad F, Ebrahimi R. Investigation of the size effect in compression test by combined Hill-Taylor theory. Adv Process Mater Eng. 2021;15(2).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.