335
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of Cr addition on the γ′ strengthened CoNiCrAlMo compositionally complex alloy

, , , , &
Pages 347-361 | Received 21 May 2022, Accepted 11 Aug 2022, Published online: 25 Aug 2022

References

  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213–218. doi:10.1016/j.msea.2003.10.257.
  • Yeh J-W. Recent progress in high-entropy alloys. Ann Chim Sci Matér. 2006;31:633–648. doi:10.3166/acsm.31.633-648.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi:10.1016/j.actamat.2016.08.081.
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi:10.1126/science.1254581.
  • Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature. 2019;574:223–227. doi:10.1038/s41586-019-1617-1.
  • Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 2017;128:292–303. doi:10.1016/j.actamat.2017.02.036.
  • Zhang R, Zhao S, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature. 2020;581:283–287. doi:10.1038/s41586-020-2275-z.
  • Gwalani B, Choudhuri D, Soni V, et al. Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy. Acta Mater. 2017;129:170–182. doi:10.1016/j.actamat.2017.02.053.
  • Gwalani B, Gorsse S, Choudhuri D, et al. Modifying transformation pathways in high entropy alloys or complex concentrated alloys via thermo-mechanical processing. Acta Mater. 2018;153:169–185. doi:10.1016/j.actamat.2018.05.009.
  • Zhao YY, Chen HW, Lu ZP, et al. Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy. Acta Mater. 2018;147:184–194. doi:10.1016/j.actamat.2018.01.049.
  • Zhao YL, Yang T, Tong Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 2017;138:72–82. doi:10.1016/j.actamat.2017.07.029.
  • Gwalani B, Soni V, Choudhuri D, et al. Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys – Al0.3CoFeCrNi and Al0.3CuFeCrNi2. Scr Mater. 2016;123:130–134. doi:10.1016/j.scriptamat.2016.06.019.
  • Tong Y, Chen D, Han B, et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures. Acta Mater. 2019;165:228–240. doi:10.1016/j.actamat.2018.11.049.
  • Baler N, Mv AS, Godha A, et al. Microstructural engineering of medium entropy NiCo(CrAl) alloy for enhanced room and high-temperature mechanical properties. Materialia. 2022;101424; doi:10.1016/j.mtla.2022.101424.
  • Zhao YL, Li YR, Yeli GM, et al. Anomalous precipitate-size-dependent ductility in multicomponent high-entropy alloys with dense nanoscale precipitates. Acta Mater. 2022;223:117480, doi:10.1016/j.actamat.2021.117480.
  • Pandey P, Kashyap S, Palanisamy D, et al. On the high temperature coarsening kinetics of γ′ precipitates in a high strength Co37.6Ni35.4Al9.9Mo4.9Cr5.9Ta2.8Ti3.5 fcc-based high entropy alloy. Acta Mater. 2019;177:82–95. doi:10.1016/j.actamat.2019.07.011.
  • He F, Zhang K, Yeli G, et al. Anomalous effect of lattice misfit on the coarsening behavior of multicomponent L12 phase. Scr Mater. 2020;183:111–116. doi:10.1016/j.scriptamat.2020.03.030.
  • Zhao YL, Yang T, Li YR, et al. Superior high-temperature properties and deformation-induced planar faults in a novel L12-strengthened high-entropy alloy. Acta Mater. 2020;188:517–527. doi:10.1016/j.actamat.2020.02.028.
  • Thermo-Calc software, High entropy alloys databse (TCHEA5),Thermo-Calc Version 2021b, https://www.thermocalc.com/products-services/databases/thermodynamic (n.d.).
  • B. ASTM, 311. Standard test method for density of powder metallurgy (PM) materials containing less than Two percent porosity 1. ASTM Int West Conshohocken. 2017: 1–5.
  • Makineni SK, Nithin B, Chattopadhyay K. Synthesis of a new tungsten-free γ–γ′ cobalt-based superalloy by tuning alloying additions. Acta Mater. 2015;85:85–94. doi:10.1016/j.actamat.2014.11.016.
  • Pandey P, Makineni SK, Samanta A, et al. Elemental site occupancy in the L12 A3B ordered intermetallic phase in Co-based superalloys and its influence on the microstructure. Acta Mater. 2019;163:140–153. doi:10.1016/j.actamat.2018.09.049.
  • Lass EA, Sauza DJ, Dunand DC, et al. Multicomponent γ’-strengthened Co-based superalloys with increased solvus temperatures and reduced mass densities. Acta Mater. 2018;147:284–295. doi:10.1016/j.actamat.2018.01.034.
  • Chen Y, Wang C, Ruan J, et al. High-strength Co–Al–V-base superalloys strengthened by γ′-Co3(Al,V) with high solvus temperature. Acta Mater. 2019;170:62–74. doi:10.1016/j.actamat.2019.03.013.
  • Chen Y, Wang C, Ruan J, et al. Development of low-density γ/γ′ Co–Al–Ta-based superalloys with high solvus temperature. Acta Mater. 2020;188:652–664. doi:10.1016/j.actamat.2020.02.049.
  • Zenk CH, Povstugar I, Li R, et al. A novel type of Co–Ti–Cr-base γ/γ′ superalloys with low mass density. Acta Mater. 2017;135:244–251. doi:10.1016/j.actamat.2017.06.024.
  • Sudbrack CK, Ziebell TD, Noebe RD, et al. Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni–Al–Cr superalloy. Acta Mater. 2008;56:448–463. doi:10.1016/j.actamat.2007.09.042.
  • Meher S, Nag S, Tiley J, et al. Coarsening kinetics of γ′ precipitates in cobalt-base alloys. Acta Mater. 2013;61:4266–4276. doi:10.1016/j.actamat.2013.03.052.
  • Pandey P, Sawant AK, Nithin B, et al. On the effect of Re addition on microstructural evolution of a CoNi-based superalloy. Acta Mater. 2019;168:37–51. doi:10.1016/j.actamat.2019.01.046.
  • Booth-Morrison C, Noebe RD, Seidman DN. Effects of tantalum on the temporal evolution of a model Ni–Al–Cr superalloy during phase decomposition. Acta Mater. 2009;57:909–920. doi:10.1016/j.actamat.2008.10.029.
  • Lifshitz IM, Slyozov VV. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids. 1961;19:35–50. doi:10.1016/0022-3697(61)90054-3.
  • Wagner C. Theory of precipitate change by redissolution. Z Elektrochem. 1961;65:581–591.
  • Ardell AJ, Ozolins V. Trans-interface diffusion-controlled coarsening. Nat Mater. 2005;4:309–316. doi:10.1038/nmat1340.
  • Philippe T, Voorhees PW. Ostwald ripening in multicomponent alloys. Acta Mater. 2013;61:4237–4244. doi:10.1016/j.actamat.2013.03.049.
  • Mukhopadhyay S, Pandey P, Baler N, et al. The role of Ti addition on the evolution and stability of γ/γ′ microstructure in a Co-30Ni-10Al-5Mo-2Ta alloy. Acta Mater. 2021;208:116736, doi:10.1016/j.actamat.2021.116736.
  • Sequeira AD, Calderon HA, Kostorz G. Shape and growth anomalies of γ’ precipitates in Ni–Al–Mo alloys induced by elastic interaction. Scr Metall Mater. 1994;30:7–12. doi:10.1016/0956-716X(94)90349-2.
  • Su CH, Voorhees PW. The dynamics of precipitate evolution in elastically stressed solids—I. Inverse coarsening. Acta Mater. 1996;44:1987–1999. doi:10.1016/1359-6454(95)00284-7.
  • Johnson WC. On the elastic stabilization of precipitates against coarsening under applied load. Acta Metall. 1984;32:465–475. doi:10.1016/0001-6160(84)90120-2.
  • Jokisaari AM, Naghavi SS, Wolverton C, et al. Predicting the morphologies of γ′ precipitates in cobalt-based superalloys. Acta Mater. 2017;141:273–284. doi:10.1016/j.actamat.2017.09.003.
  • Meher S, Carroll LJ, Pollock TM, et al. Solute partitioning in multi-component γ/γ′ Co–Ni-base superalloys with near-zero lattice misfit. Scr Mater. 2016;113:185–189. doi:10.1016/j.scriptamat.2015.10.039.
  • Lund AC, Voorhees PW. The effects of elastic stress on microstructural development: the three-dimensional microstructure of a γ–γ′ alloy. Acta Mater. 2002;50:2585–2598. doi:10.1016/S1359-6454(02)00087-3.
  • Ardell AJ, Nicholson RB. On the modulated structure of aged Ni-Al alloys: with an appendix on the elastic interaction between inclusions by J. D. Eshelby Cavendish Laboratory, University of Cambridge, England. Acta Metall. 1966;14:1295–1309. doi:10.1016/0001-6160(66)90247-1.
  • Bauer A, Neumeier S, Pyczak F, et al. Creep strength and microstructure of polycrystalline γ’-strengthened cobalt-base superalloys. Superalloys. 2012;12:695–703.
  • Povstugar I, Zenk CH, Li R, et al. Elemental partitioning, lattice misfit and creep behaviour of Cr containing γ ′ strengthened Co base superalloys. Mater Sci Technol. 2016;32:220–225. doi:10.1179/1743284715Y.0000000112.
  • Sudbrack CK, Yoon KE, Noebe RD, et al. Temporal evolution of the nanostructure and phase compositions in a model Ni–Al–Cr alloy. Acta Mater. 2006;54:3199–3210. doi:10.1016/j.actamat.2006.03.015.
  • Slater JC. Atomic radii in crystals. J Chem Phys. 1964;41:3199–3204. doi:10.1063/1.1725697.
  • Calderon HA, Voorhees PW, Murray JL, et al. Ostwald ripening in concentrated alloys. Acta Metall Mater. 1994;42:991–1000. doi:10.1016/0956-7151(94)90293-3.
  • Neumeier S, Rehman HU, Neuner J, et al. Diffusion of solutes in fcc cobalt investigated by diffusion couples and first principles kinetic Monte Carlo. Acta Mater. 2016;106:304–312. doi:10.1016/j.actamat.2016.01.028.
  • Sauza DJ, Bocchini PJ, Dunand DC, et al. Influence of ruthenium on microstructural evolution in a model CoAlW superalloy. Acta Mater. 2016;117:135–145. doi:10.1016/j.actamat.2016.07.014.
  • Azzam A, Philippe T, Hauet A, et al. Kinetics pathway of precipitation in model Co-Al-W superalloy. Acta Mater. 2018;145:377–387. doi:10.1016/j.actamat.2017.12.032.
  • Zhou HJ, Xue F, Chang H, et al. Effect of Mo on microstructural characteristics and coarsening kinetics of γ’ precipitates in Co–Al–W–Ta–Ti alloys. J Mater Sci Technol. 2018;34:799–805. doi:10.1016/j.jmst.2017.04.012.
  • Pandey P, Raj A, Baler N, et al. On the effect of Ti addition on microstructural evolution, precipitate coarsening kinetics and mechanical properties in a Co-30Ni-10Al-5Mo-2Nb alloy. Materialia. 2021;101072; doi:10.1016/j.mtla.2021.101072.
  • Yang T, Zhao YL, Fan L, et al. Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys. Acta Mater. 2020;189:47–59. doi:10.1016/j.actamat.2020.02.059.
  • Tsai K-Y, Tsai M-H, Yeh J-W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61:4887–4897. doi:10.1016/j.actamat.2013.04.058.
  • Vaidya M, Pradeep KG, Murty BS, et al. Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 2018;146:211–224. doi:10.1016/j.actamat.2017.12.052.
  • Vaidya M, Pradeep KG, Murty BS, et al. Radioactive isotopes reveal a nonsluggish kinetics of grain boundary diffusion in high entropy alloys. Sci Rep. 2017;7:1–11. doi:10.1038/s41598-017-12551-9.
  • Gaertner D, Abrahams K, Kottke J, et al. Concentration-dependent atomic mobilities in FCC CoCrFeMnNi high-entropy alloys. Acta Mater. 2019;166:357–370. doi:10.1016/j.actamat.2018.12.033.
  • Mehta A, Sohn Y. Investigation of sluggish diffusion in FCC Al0.25CoCrFeNi high-entropy alloy. Mater Res Lett. 2021;9:239–246. doi:10.1080/21663831.2021.1878475.
  • Mehta A, Sohn Y. Interdiffusion, solubility limit, and role of entropy in FCC Al-Co-Cr-Fe-Ni alloys. Metall Mater Trans A. 2020;51:3142–3153. doi:10.1007/s11661-020-05742-z.
  • Dąbrowa J, Zajusz M, Kucza W, et al. Demystifying the sluggish diffusion effect in high entropy alloys. J Alloys Compd. 2019;783:193–207. doi:10.1016/j.jallcom.2018.12.300.
  • Jin K, Zhang C, Zhang F, et al. Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys. Mater Res Lett. 2018;6:293–299. doi:10.1080/21663831.2018.1446466.
  • Breidi A, Allen J, Mottura A. First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys. Acta Mater. 2018;145:97–108. doi:10.1016/j.actamat.2017.11.042.
  • Suzuki A, Pollock TM. High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys. Acta Mater. 2008;56:1288–1297. doi:10.1016/j.actamat.2007.11.014.
  • Baldan R, Nunes CA, Barboza MJR, et al. Tensile properties of MAR-M247 superalloy. Int Conf Adv Mater SBPMat. 2009;11:1.
  • Paidar V, Pope DP, Vitek V. A theory of the anomalous yield behavior in L12 ordered alloys. Acta Metall. 1984;32:435–448. doi:10.1016/0001-6160(84)90117-2.
  • Takeuchi S, Kuramoto E. Temperature and orientation dependence of the yield stress in Ni{in3}Ga single crystals. Acta Metall. 1973;21:415–425. doi:10.1016/0001-6160(73)90198-3.
  • Kear BH. Dislocation configurations and work hardening in Cu3Au crystals. Acta Metall. 1964;12:555–569. doi:10.1016/0001-6160(64)90028-8.
  • Thornton PH, Davies RG. The temperature dependence of the flow stress of gamma prime phases having the Ll2 structure. Metall Mater Trans B. 1970;1:549–550. doi:10.1007/BF02811575.
  • Yamaguchi M, Umakoshi Y. The deformation behaviour of intermetallic superlattice compounds. Prog Mater Sci. 1990;34:1–148. doi:10.1016/0079-6425(90)90002-Q.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.