175
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of ion implantation on corrosion resistance of the nickel over steel

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon show all
Pages 660-670 | Received 06 Apr 2022, Accepted 24 Sep 2022, Published online: 12 Oct 2022

References

  • Abbass MK, Ajeel SA, Wadullah HM. Biocompatibility, bioactivity and corrosion resistance of stainless steel 316L nanocoated with TiO2 and Al2O3 by atomic layer deposition method. J Phys: Conf Ser. 2018;1032:012017. doi:10.1088/1742-6596/1032/1/012017.
  • Abdeen DH, El Hachach M, Koc M, et al. A review on the corrosion behaviour of nanocoatings on metallic substrates. Materials (Basel). 2019;12 (2):210. doi:10.3390/ma12020210.
  • Abdi F, Savaloni H. Corrosion Inhibition of AISI304 Stainless Steel by Graphen Oxide Coating, 2019. Available from: https://arar.sci.am/dlibra/publication/26357 (accessed October 3, 2021).
  • Aherwar A. Manufacturing and evaluation of corrosion resistance of nickel-added Co–30Cr–4Mo metal alloy for orthopaedic biomaterials. In: PS Bains, SS Sidhu, M Bahraminasab, C Prakash, editors. Biomaterials in orthopaedics and bone regeneration: design and synthesis. Singapore: Springer; 2019. p. 159–174. doi:10.1007/978-981-13-9977-0_11.
  • Bekmurzayeva A, Duncanson WJ, Azevedo HS, et al. Surface modification of stainless steel for biomedical applications: revisiting a century-old material. Mater Sci Eng C. 2018;93:1073–1089. doi:10.1016/j.msec.2018.08.049.
  • Ferreira CP, de Castro MdMR, Tentardini EK, et al. Silicon influence on corrosion resistance of magnetron sputtered ZrN and ZrSiN thin films. Surf Eng. 2020;36 (1):33–40. doi:10.1080/02670844.2018.1548100.
  • Geetha M, Singh AK, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog Mater Sci. 2009;54 (3):397–425. doi:10.1016/j.pmatsci.2008.06.004.
  • Ningshen S, Kamachi Mudali U, Ramya S, et al. Corrosion behaviour of AISI type 304L stainless steel in nitric acid media containing oxidizing species. Corros Sci. 2011;53 (1):64–70. doi:10.1016/j.corsci.2010.09.023.
  • Savaloni H, Agha-Taheri E, Abdi F. On the corrosion resistance of AISI 316L-type stainless steel coated with manganese and annealed with flow of oxygen. J Theor Appl Phys. 2016;10 (2):149–156. doi:10.1007/s40094-016-0213-0.
  • Shakoury R, Korpi AG, Ghosh K, et al. Stereometric and scaling law analysis of surface morphology of stainless steel type AISI 304 coated with Mn: a conventional and fractal evaluation. Mater Res Express. 2019;6 (11):116436. doi:10.1088/2053-1591/ab4aa6.
  • Stach S, Garczyk Ż, Ţălu Ş, et al. Stereometric parameters of the Cu/Fe NPs thin films. J Phys Chem C. 2015;119 (31):17887–17898. doi:10.1021/acs.jpcc.5b04676.
  • Wang K.-K., Kim B.-J., I.-Heo, et al. Fabrication and characterization of antimicrobial surface-modified stainless steel for bio-application. Surf Coat Technol. 2017;310:256–262. doi:10.1016/j.surfcoat.2016.12.088.
  • Bertero E, Hasegawa M, Staubli S, et al. Electrodeposition of amorphous Fe-Cr-Ni stainless steel alloy with high corrosion resistance, low cytotoxicity and soft magnetic properties. Surf Coat Technol. 2018;349:745–751. doi:10.1016/j.surfcoat.2018.06.003.
  • Fauvet P, Balbaud F, Robin R, et al. Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants. J Nucl Mater. 2008;375 (1):52–64. doi:10.1016/j.jnucmat.2007.10.017.
  • Kain V, De Pk. Controlling corrosion in the back end of fuel cycle using nitric acid grade stainless steels. Int J Nucl Energy Sci Technol. 2005;1 (2/3):220–231. doi:10.1504/IJNEST.2005.007146.
  • Modiri F, Savaloni H. A study of the corrosion of stainless steel 304L coated with a 190 nm-thick manganese layer and annealed with nitrogen flux in a 0.4-mole solution of H2SO4 at different temperatures. J Theor Appl Phys. 2020;14 (1):21–35. doi:10.1007/s40094-019-00345-5.
  • Ningshen S, Kamachi Mudali U, Amarendra G, et al. Corrosion assessment of nitric acid grade austenitic stainless steels. Corros Sci. 2009;51 (2):322–329. doi:10.1016/j.corsci.2008.09.038.
  • Ningshen S, Sakairi M. Corrosion degradation of AISI type 304L stainless steel for application in nuclear reprocessing plant. J Solid State Electrochem. 2015;19 (12):3533–3542. doi:10.1007/s10008-015-2891-y.
  • Grayeli Korpi AR, Bahmanpour KM. Effect of nitriding temperature on the nanostructure and corrosion properties of nickel coated 304 stainless steel. Progress Color Color Coat. 2017;10:85–92. doi:10.30509/pccc.2017.75719.
  • Tokarz A, Fr T. Structure, hardness and thermal stability of electrodeposited Cu/Ni nanostructured multilayers, (n.d.) 6.
  • Grayeli Korpi AR, Balashabadi P, Larijani MM, et al. Effect of gas ratio on tribological and corrosion properties of ion beam sputter deposited TiN coatings. Progress Color, Color Coat. 2018;11:129–135. doi:10.30509/pccc.2018.75745.
  • Grayeli Korpi AR, Bahmanpour KM. Influence of nitrogen ion implantation on the nanostructure and corrosivity of Ni/stainless steel substrates. Prog Color Color Coat. 2016;9:77–83. doi:10.30509/pccc.2016.75879.
  • Poole CP, Owens FJ. Introduction to nanotechnology. John Wiley & Sons, Inc., Hoboken, New Jersey, USA; 2003.
  • Levintant-Zayonts N, Starzyński G, Kucharski S. Effect of N ion implantation on tribological properties of spring steels. Appl Surf Sci. 2022;591:153117. doi:10.1016/j.apsusc.2022.153117.
  • Liu W, Man Q, Li J, et al. Microstructural evolution and vibration fatigue properties of 7075-T651 aluminum alloy treated by nitrogen ion implantation. Vacuum. 2022;199:110931. doi:10.1016/j.vacuum.2022.110931.
  • Xu C, Liu X, Li Y, et al. Microstructural and mechanical properties of nitrogen ion irradiated 316 stainless steel. Nucl Technol. 2022;208 (6):1083–1088. doi:10.1080/00295450.2021.1997058.
  • Fu Y, Wu X, Han E-H, et al. Effects of nitrogen on the passivation of nickel-free high nitrogen and manganese stainless steels in acidic chloride solutions. Electrochim Acta. 2009;54 (16):4005–4014. doi:10.1016/j.electacta.2009.02.024.
  • Grayeli Korpi A, Arman A, Jurečka S, et al. Improving the corrosion resistance of Ni/SS thin films by nitrogen ion implantation. Acta Phys Pol A. 2019;136 (3):536–541. doi:10.12693/APhysPolA.136.536.
  • Muthupandi V, Bala Srinivasan P, Shankar V, et al. Effect of nickel and nitrogen addition on the microstructure and mechanical properties of power beam processed duplex stainless steel (UNS 31803) weld metals. Mater Lett. 2005;59 (18):2305–2309. doi:10.1016/j.matlet.2005.03.010.
  • Korpi AG, Ţălu Ş, Bramowicz M, et al. Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Mater Res Express. 2019;6 (8):086463. doi:10.1088/2053-1591/ab26be.
  • Shakoury R, Arman A, Ţălu Ş, et al. Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted. Opt Quant Electron. 2020;52 (5):270. doi:10.1007/s11082-020-02388-4.
  • Ţălu Ş, Bramowicz M, Kulesza S, et al. Surface morphology analysis of composite thin films based on titanium-dioxide nanoparticles. Acta Phys Pol A. 2017;131 (6):1529–1533. doi:10.12693/APhysPolA.131.1529.
  • Rezaee S, Arman A, Jurečka S, et al. Effect of annealing on the micromorphology and corrosion properties of Ti/SS thin films. Superlattices Microstruct. 2020;146:106681. doi:10.1016/j.spmi.2020.106681.
  • Arman A, Ţălu Ş, Luna C, et al. Micromorphology characterization of copper thin films by AFM and fractal analysis. J Mater Sci: Mater Electron. 2015;26 (12):9630–9639. doi:10.1007/s10854-015-3628-5.
  • Naseri N, Solaymani S, Ghaderi A, et al. Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro- and nanoscale. RSC Adv. 2017;7 (21):12923–12930. doi:10.1039/C6RA28795F.
  • Stach S, Sapota W, Ţălu Ş, et al. 3-D surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures. J Mater Sci: Mater Electron. 2017;28 (2):2113–2122. doi:10.1007/s10854-016-5774-9.
  • Mwema FM, Akinlabi ET, Oladijo OP, et al. Chapter two - advances in manufacturing analysis: fractal theory in modern manufacturing. In: K Kumar, JP Davim, editors. Modern manufacturing processes. Woodhead, Amsterdam, The Netherlands; 2020. p. 13–39. doi:10.1016/B978-0-12-819496-6.00002-6.
  • Talu S, Stach S, Valedbagi S, et al. Multifractal characteristics of titanium nitride thin films. Mater Sci Pol. 2015;33(3):541–548. doi:10.1515/msp-2015-0086.
  • Ţălu Ş, Stach S, Méndez A, et al. Multifractal characterization of nanostructure surfaces of electrodeposited Ni-P coatings. J Electrochem Soc. 2013;161:D44. doi:10.1149/2.039401jes.
  • Ţălu Ş, Bramowicz M, Kulesza S, et al. Fractal features of carbon–nickel composite thin films. Microsc Res Tech. 2016;79 (12):1208–1213. doi:10.1002/jemt.22779.
  • Ţălu Ş, Morozov IA, Yadav RP. Multifractal analysis of sputtered indium tin oxide thin film surfaces. Appl Surf Sci. 2019;484:892–898. doi:10.1016/j.apsusc.2019.04.170.
  • Vallée C, Bonvalot M, Belahcen S, et al. Plasma deposition – impact of ions in plasma enhanced chemical vapor deposition, plasma enhanced atomic layer deposition, and applications to area selective deposition. J Vac Sci Technol A. 2020;38 (3):033007. doi:10.1116/1.5140841.
  • Basahel SN, Ali TT, Mokhtar M, et al. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res Lett. 2015;10 (1):73. doi:10.1186/s11671-015-0780-z.
  • Gottardi G, Laidani N, Micheli V, et al. Effects of oxygen concentration in the Ar/O2 plasma on the bulk structure and surface properties of RF reactively sputtered zirconia thin films. Surf Coat Technol. 2008;202 (11):2332–2337. doi:10.1016/j.surfcoat.2007.08.052.
  • Rebib F, Laidani N, Gottardi G, et al. Investigation of structural and optical properties of sputtered zirconia thin films. Euro Phys J Appl Phys. 2008;43 (3):363–368. doi:10.1051/epjap:2008129.
  • Shakoury R, Talebani N, Zelati A, et al. The effect of thickness and film homogeneity on the optical and microstructures of the ZrO2 thin films prepared by electron beam evaporation method. Opt Quant Electron. 2021;53 (8):441. doi:10.1007/s11082-021-03079-4.
  • Ţălu Ş, Yadav RP, Mittal AK, et al. Application of Mie theory and fractal models to determine the optical and surface roughness of Ag–Cu thin films. Opt Quant Electron. 2017;49 (7):256. doi:10.1007/s11082-017-1079-3.
  • Yan C, Zeng Q, He W, et al. Enhanced surface hardness and tribocorrosion performance of 60NiTi by boron ion implantation and post-annealing. Tribol Int. 2021;155:106816. doi:10.1016/j.triboint.2020.106816.
  • Dou Z, Guo Y, Zhang F, et al. Effect of low-energy nitrogen ion implantation on friction and wear properties of Ion-plated TiC coating. Coatings. 2021;11 (7):775. doi:10.3390/coatings11070775.
  • Whitehouse DJ. Handbook of surface and nanometrology. New York: Taylor & Francis; 2002. doi:10.1201/9781420034196.
  • Yu N, Polycarpou AA. Contact of rough surfaces with asymmetric distribution of asperity heights. J Tribol. 2001;124 (2):367–376. doi:10.1115/1.1403458.
  • Tayebi N, Polycarpou AA. Modeling the effect of skewness and kurtosis on the static friction coefficient of rough surfaces. Tribol Int. 2004;37 (6):491–505. doi:10.1016/j.triboint.2003.11.010.
  • Abdi F, Savaloni H. Influence of N+ ion implantation at different temperatures on nanostructural modifications and characteristics of Al alloy surface. Philos Mag. 2016;96 (13):1305–1317. doi:10.1080/14786435.2016.1162912.
  • Abdi F, Savaloni H. Surface nanostructure modification of Al substrates by N+ ion implantation and their corrosion inhibition. T Nonferr Metal Soc China. 2017;27 (3):701–710. doi:10.1016/S1003-6326(17)60078-5.
  • Cristóbal MJ, Figueroa R, Mera L, et al. Tribological behaviour of aluminium alloy AA7075 after ion implantation. Surf Coat Technol. 2012;209:124–130. doi:10.1016/j.surfcoat.2012.08.050.
  • Figueroa R, Abreu CM, Cristóbal MJ, et al. Effect of nitrogen and molybdenum ion implantation in the tribological behavior of AA7075 aluminum alloy. Wear. 2012;276–277:53–60. doi:10.1016/j.wear.2011.12.005.
  • Hapsari S, Sujitno T, Ahmadi H, et al. Analysis of nitrogen ion implantation on the corrosion resistance and mechanical properties of aluminum alloy 7075. J Phys: Conf Ser. 2020;1436 (1):012075. doi:10.1088/1742-6596/1436/1/012075.
  • Franco LA, Sinatora A. 3D surface parameters (ISO 25178-2): actual meaning of Spk and its relationship to Vmp. Prec Eng. 2015;40:106–111. doi:10.1016/j.precisioneng.2014.10.011.
  • R. Leach, Chapter one – Introduction to Surface Topography. In: R. Leach, editors. Characterisation of Areal Surface Texture. Springer-Verlag, Berlin Heidelberg, Germany, 2013. p. 1–13. doi:10.1007/978-3-642-36458-7.
  • Barányi I, Czifra Á, Kalácska G. Height-independent topographic parameters of worn surfaces. IJSMED. 2011;2 (1):35–40. doi:10.21825/scad.v2i1.20433.
  • ŢTălu Ş, Janus K, Stach S. Nanoscale patterns in carbon–nickel nanocomposite thin films investigated by AFM and stereometric analysis. Int J Mater Struct Integrity. 2017;4, 54–62.
  • Scott PJ. Feature parameters. Wear. 2009;266 (5-6):548–551. doi:10.1016/j.wear.2008.04.056.
  • Matos RS, Pinto EP, Ramos GQ, et al. Stereometric characterization of kefir microbial films associated with Maytenus rigida extract. Microsc Res Tech. 2020;83 (11):1401–1410. doi:10.1002/jemt.23532.
  • Ţălu Ş, Stach S, Sueiras V, et al. Fractal analysis of AFM images of the surface of Bowman’s membrane of the human cornea. Ann Biomed Eng. 2014. doi:10.1007/s10439-014-1140-3.
  • Jacobs TDB, Junge T, Pastewka L. Quantitative characterization of surface topography using spectral analysis. Surf Topogr: Metrol Prop. 2017;5 (1):013001. doi:10.1088/2051-672X/aa51f8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.