335
Views
3
CrossRef citations to date
0
Altmetric
Review

Nanocarbon reinforced aluminium matrix (NRAM) composites: fabrication, structure and properties

, &
Pages 637-651 | Received 24 Jun 2022, Accepted 14 Oct 2022, Published online: 06 Nov 2022

References

  • Dash D, Samanta S, Rai RN. Study on fabrication of magnesium based metal matrix composites and its improvement in mechanical and tribological properties – a review. IOP Conf Ser: Mater Sci Eng. 2018;377:012133.
  • Ashwath P, Xavior MA. Effect of ceramic reinforcements on microwave sintered metal matrix composites. Mater Manuf Processes. 2018;33(1):7–12.
  • Shirvanimoghaddam K, Hamim SU, Akbari MK, et al. Carbon fiber reinforced metal matrix composites: fabrication processes and properties. Composites Part A: Applied Science and Manufacturing. 2017;92:70–96.
  • Gordo E, Oliva A, Ruiz-Navas EM, et al. Development of Fe-based metal matrix composites. Boletín de la Sociedad Española de Cerámica y Vidrio. 2004;43(2):416–419.
  • Malaki M, Tehrani AF, Niroumand B, et al. Wettability in metal matrix composites. Metals (Basel). 2021;11(7):1034.
  • Togwe T, Gokce A, Chen YY, et al. Metal matrix composites for fabricating tooling. Int J Refract Met Hard Mater. 2020;87:105169.
  • Kasar A, Xiong GP, Menezes PL. Graphene-reinforced metal and polymer matrix composites. Jom. 2018;70(6):829–836.
  • Chak V, Chattopadhyay H, Dora TL. A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. J Manuf Process. 2020;56:1059–1074.
  • Surappa MK. Aluminium matrix composites: challenges and opportunities. Sadhana-Acad Proceed Eng Sci. 2003;28:319–334.
  • Singh L, Singh B, Saxena KK. Manufacturing techniques for metal matrix composites (MMC): an overview. Adv Mater Process Technol. 2020;6(2):441–457.
  • Eschbach J, Rouxel D, Vincent B, et al. Development and characterization of nanocomposite materials. Materials Science and Engineering: C. 2007;27(5-8):1260–1264.
  • Miu M, Kleps I, Ignat T, et al. Study of nanocomposite iron/porous silicon material. J Alloys Compd. 2010;496(1-2):265–268.
  • Ostrovidova GU, Makeev AV, Biryukov AV, et al. Carbon nanocomposite materials as medicinal depot. Materials Science and Engineering: C. 2003;23(3):377–381.
  • Shirdar MR, Farajpour N, Shahbazian-Yassar R, et al. Nanocomposite materials in orthopedic applications. Front Chem Sci Eng. 2019;13(1):1–13.
  • Chak V, Chattopadhyay H. Synthesis of graphene-aluminium matrix nanocomposites: mechanical and tribological properties. Mater Sci Technol. 2021;37(5):467–477.
  • Chak V, Chattopadhyay H, Dora TL. Application of solid processing routes for the synthesis of graphene-aluminum composites – a review. Mater Manuf Processes. 2021;36(11):1219–1235.
  • Mortensen A, Llorca J.. Metal matrix composites, Annual review of materials research. 2010;40:243–270
  • Jin FL, Lee SY, Park SJ. Polymer matrices for carbon fiber-reinforced polymer composites. Carbon Letters. 2013;14(2):76–88.
  • Lamon J. Les composites à matrice céramique. Annales de Chimie Science des Matériaux. 2005;30(6):541–546.
  • Lam SK, Clyne TW. Toughness of metal fibre/ceramic matrix composites (MFCs) after severe heat treatments. Mater Sci Technol. 2014;30(10):1135–1141.
  • Sebo P, Stefanik P. Copper matrix±carbon fibre composites. Int J Mater Prod Technol. 2003;18(1-3):141–159.
  • Du WB, Yan ZJ, Wu YF, et al. Conventional and novel fabrication of magnesium matrix composites. Rare Met Mater Eng. 2009;38(3):559–564.
  • Mu WP, Lin JB, Gong Y, et al. Microstructure and mechanical properties of Ni-coated continuous carbon fibers-reinforced pure aluminum matrix composites prepared by twin-roll casting method. Adv Eng Mater. 2021;23:12.
  • Scharf TW, Neira A, Hwang JY, et al. Self-lubricating carbon nanotube reinforced nickel matrix composites. J Appl Phys. 2009;106(1):013508.
  • Yan YW, Geng L. Effects of particle size on deformation behaviour of metal matrix composites. Mater Sci Technol. 2007;23(3):374–378.
  • Hu Z, Tong G, Lin D, et al. Graphene-reinforced metal matrix nanocomposites – a review. Mater Sci Technol. 2016;32(9):930–953.
  • Gurrappa I, Prasad VVB. Corrosion characteristics of aluminium based metal matrix composites. Mater Sci Technol. 2006;22(1):115–122.
  • Reihanian M, Bagherpour E, Paydar MH. Particle distribution in metal matrix composites fabricated by accumulative roll bonding. Mater Sci Technol. 2012;28(1):103–108.
  • Singh ARP, Hwang JY, Scharf TW, et al. Bulk nickel-carbon nanotube nanocomposites by laser deposition. Mater Sci Technol. 2010;26(11):1393–1400.
  • Rabiei A, Vendra L, Kishi T. Fracture behavior of particle reinforced metal matrix composites. Composites Part A: Applied Science and Manufacturing. 2008;39(2):294–300.
  • Valle R, Vidal-Setif MH, Schuster D, et al. Tensile and fatigue behavior of Al-based metal matrix composites reinforced with continuous carbon or alumina fibers: Part II. Quasi-unidirectional composite cross-ply laminates. Metallurgical and Materials Transactions A. 2004;35(10):3307–3317.
  • Llorca J. Fatigue of particle-and whisker-reinforced metal-matrix composites. Prog Mater Sci. 2002;47(3):283–353.
  • Ramesh P, Nataraj M. Automotive industry application of aluminium-based hybrid metal matrix composite. Int J Heavy Veh Syst. 2020;27(1–2):18–32.
  • Das DK, Mishra PC, Singh S, et al. Properties of ceramic-reinforced aluminium matrix composites – a review. Int J Mech Mater Eng. 2014;9(1):12.
  • Laad M, Ghule B. Synthesis and characterisation of natural ceramic reinforced titanium metal matrix composite. Can Metall Q. 2021;60(3):196–202.
  • Ba Y, Sun S. Tensile and fatigue properties of fiber-reinforced metal matrix composites Cf/5056Al. Compos Adv Mater. 2021;30. doi:10.1177/2633366X20929712.
  • Carneiro I, Viana F, Vieira MF, et al. EBSD analysis of metal matrix nanocomposite microstructure produced by powder metallurgy. Nanomaterials. 2019;9(6):878.
  • Casati R, Vedani M. Metal matrix composites reinforced by nano-particles – a review. Metals (Basel). 2014;4(1):65–83.
  • Ali AM, Omar MZ, Hashim H, et al. Recent development in graphene-reinforced aluminium matrix composite: a review. Rev Adv Mater Sci. 2021;60(1):801–817.
  • Merino CAI, Sillas JEL, Meza JM, et al. Metal matrix composites reinforced with carbon nanotubes by an alternative technique. J Alloys Compd. 2017;707:257–263.
  • Somani N, Tyagi YK, Kumar P, et al. Enhanced tribological properties of SiC reinforced copper metal matrix composites. Mater Res Express. 2019;6(1):016549.
  • Rofman OV, Prosviryakov AS, Kotov AD, et al. /Sicp metal matrix composite by mechanical alloying. Met Mater Int. 2022;(28):811–822.
  • Manikandan R, Arjunan TV. Microstructure and mechanical characteristics of CDA-B4C hybrid metal matrix composites. Met Mater Int. 2021;27(5):885–899.
  • Cao FH, Chen C, Wang ZY, et al. Effects of silicon carbide and tungsten carbide in aluminium metal matrix composites. Silicon. 2019;11(6):2625–2632.
  • Singh MK, Gautam RK. Structural, mechanical, and electrical behavior of ceramic-reinforced copper metal matrix hybrid composites. J Mater Eng Perform. 2019;28(2):886–899.
  • Behera MP, Dougherty T, Singamneni S. Selective laser melting of stainless steel and silicon nitride fibre metal matrix composites. Proceedings of the Institution of Mechanical Engineers, Part B: J Eng Manuf. 2020;234(12):1513–1525.
  • Ahamad N, Mohammad A, Rinawa ML, et al. Correlation of structural and mechanical properties for Al-Al2O3-SiC hybrid metal matrix composites. J Compos Mater. 2021;55(23):3267–3280.
  • Mousavian RT, Behnamfard S, Heidarzadeh A, et al. Incorporation of SiC ceramic nanoparticles into the aluminum matrix by a novel method: production of a metal matrix composite. Met Mater Int. 2021;27(8):2968–2976.
  • Ding YP, Xu JL, Hu JB, et al. High performance carbon nanotube-reinforced magnesium nanocomposite. Mater Sci Eng - a Structural Materials Properties Microstructure and Processing. 2020;771:138575.
  • Isaza C, Sierra G, Meza JM. A novel technique for production of metal matrix composites reinforced with carbon nanotubes. J Manuf Sci Eng. 2016;138(2):024501.
  • Kim KT, Eckert J, Liu G, et al. Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing. Scr Mater. 2011;64(2):181–184.
  • Mokdad F, Chen DL, Liu ZY, et al. Hot deformation and activation energy of a CNT-reinforced aluminum matrix nanocomposite. Mater Sci Eng A. 2017;695:322–331.
  • Muhsan AS, Ahmad F, Mohamed NM, et al. Homogeneous distribution of carbon nanotubes in copper matrix nanocomposites fabricated via combined technique. Nanosci Nanotechnol Lett. 2014;6(10):865–874.
  • Pal H, Sharma V, Sharma M. Thermal expansion behavior of CNT/Ag nanocomposite. Int J Mater Res. 2014;105(6):566–570.
  • Pham VT, Nguyen VA, Bui HT, et al. A method to obtain homogeneously dispersed carbon nanotubes in Al powders for preparing Al/CNTs nanocomposite. Adv Nat Sci-Nanosci Nanotechnol. 2013;4:2.
  • Sharma M, Sharma V. Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite. Int J Miner, Metall Mater. 2016;23(2):222–233.
  • Zheng LX, O’Connell MJ, Doorn SK, et al. Ultralong single-wall carbon nanotubes. Nat Mater. 2004;3(10):673–676.
  • Pfeiffer R, Pichler T, Kim YA, et al. Double-wall carbon nanotubes. In: A Jorio, G Dresselhaus, MS Dresselhaus, editors. Carbon Na notubes: advanced topics in the synthesis, structure, properties and applications. Heidelberg: Springer Berlin; 2008; p. 495–530.
  • Hasegawa T, Arenas DJ, Kohno H. Multi-walled carbon nanotube growth in multi-walled carbon nanotubes by chemical vapor deposition. J Nanosci Nanotechnol. 2015;15(2):1801–1804.
  • Stalin B, Ravichandran M, Karthick A, et al. Investigations on microstructure, mechanical, thermal, and tribological behavior of Cu-MWCNT composites processed by powder metallurgy. J Nanomater. 2021:3913601.
  • Daneshvar F, Zhang T, Aziz A, et al. Tuning the composition and morphology of carbon nanotube-copper interface. Carbon N Y. 2020;157:583–593.
  • Chen W, Yang T, Dong L, et al. Advances in graphene reinforced metal matrix nanocomposites: mechanisms, processing, modelling, properties and applications. Nanotechnol Precis Eng. 2020;3(4):189–210.
  • Ranjan R, Bajpai V. Graphene-based metal matrix nanocomposites: recent development and challenges. J Compos Mater. 2021;55(17):2369–2413.
  • Memarian F, Fereidoon A, Ganji MD. Graphene Young’s modulus: molecular mechanics and DFT treatments. Superlattices Microstruct. 2015;85:348–356.
  • Hidalgo-Manrique P, Lei XZ, Xu RY, et al. Copper/graphene composites: a review. J Mater Sci. 2019; 54(19):12236–12289.
  • Jensen BD, Wise KE, Odegard GM. Simulation of the elastic and ultimate tensile properties of diamond, graphene, carbon nanotubes, and amorphous carbon using a revised ReaxFF parametrization. J Phys Chem A. 2015;119(37):9710–9721.
  • Al-Saleh MH, Sundararaj U. Review of the mechanical properties of carbon nanofiber/polymer composites. Composites Part A: Applied Science and Manufacturing. 2011;42(12):2126–2142 (and references herewith).
  • Coleman JN, Khan U, Gun’ko YK. Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater. 2006;18(6):689–706.
  • Endo M, Kim YA, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs): basic properties and their battery applications. Carbon N Y. 2001;39(9):1287–1297.
  • Malaki M, Xu WW, Kasar AK, et al. Advanced metal matrix nanocomposites. Metals (Basel). 2019;9(3):330.
  • Liu QB, Fan GL, Tan ZQ, et al. Reinforcement with intragranular dispersion of carbon nanotubes in aluminum matrix composites. Compos B-Eng. 2021;217:108915.
  • Aborkin A, Khorkov K, Prusov E, et al. Effect of increasing the strength of aluminum matrix nanocomposites reinforced with microadditions of multiwalled carbon nanotubes coated with TiC nanoparticles. Nanomaterials. 2019;9(11):1596.
  • Zhang S, Chen GQ, Wei JQ, et al. Effects of energy input during friction stir processing on microstructures and mechanical properties of aluminum/carbon nanotubes nanocomposites. Journal of Alloys and Compounds. 2019;798:523–530.
  • Ma ZY, Liu ZY, Xiao BL, et al. Fabrication of carbon nanotube reinforced aluminum matrix composites via friction stir processing. In: R Mishra, MW Mahoney, Y Sato, Y Hovanski, R Verma, editors. Friction stir welding and processing VII. Cham: Springer International; 2016; p. 21–28.
  • Laha T, Chen Y, Lahiri D, et al. Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos A: Appl Sci Manufact. 2009;40(5):589–594.
  • Laha T, Agarwal A, McKechnie T, et al. Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater Sci Eng A. 2004;381(1–2):249–258.
  • Mansoor M, Shahid M. Carbon nanotube-reinforced aluminum composite produced by induction melting. J Appl Res Technol. 2016;14(4):215–224.
  • Tiwari JK, Mandal A, Rudra A, et al. Influence of graphene content on the mechanical properties of severely deformed graphene/aluminum composite. Mater Chem Phys. 2020;248:122939.
  • Mansoor M, Khan S, Ali A, et al. Fabrication of aluminum-carbon nanotube nano-composite using aluminum-coated carbon nanotube precursor. J Compos Mater. 2019;53(28–30):4055–4064.
  • Sharma S, Patyal V, Sudhakara P, et al. Mechanical, morphological, and fracture-deformation behavior of MWCNTs-reinforced (Al–Cu–Mg–T351) alloy cast nanocomposites fabricated by optimized mechanical milling and powder metallurgy techniques. Nanotechnol Rev. 2022;11(1):65–85.
  • Kucukyildirim BO, Eker AA. Fabrication of carbon nanotube reinforced aluminum alloy composites by vacuum-assisted infiltration technique. J Compos Mater. 2021;55(16):2225–2235.
  • Uriza-Vega E, Carreno-Galkirdo C, Lopez-Melendez C, et al. Mechanical behavior of multiwalled carbon nanotube reinforced 7075 aluminum alloy composites prepared by mechanical milling and Hot extrusion. Mater Res-Ibero-Am J Mater. 2019;22(2). doi:10.1590/1980-5373-MR-2018-0652.
  • Du XM, Zheng KF, Liu FG, et al. Microstructure and mechanical properties of graphene-reinforced aluminum-matrix composites. Materiali in Tehnologije. 2018;52(6):763–768.
  • Jiang YY, Xu R, Tan ZQ, et al. Interface-induced strain hardening of graphene nanosheet/aluminum composites. Carbon N Y. 2019;146:17–27.
  • Meng JS, Shi XP, Wang MY, et al. Microstructure and wear resistance of graphene-reinforced aluminum matrix composites. Mater Res Express. 2019;6(2):026517.
  • Cui XD, Cai XL, Wang QL, et al. Preparation and properties of modified graphene reinforced aluminum matrix composites. Integr Ferroelectr. 2021;218(1):17–26.
  • Dasari BL, Brabazon D, Naher S. Prediction of mechanical properties of graphene oxide reinforced aluminum composites. Metals (Basel). 2019;9(10):1077.
  • Askarnia R, Ghasemi B, Fardi SR, et al. Fabrication of high strength aluminum-graphene oxide (GO) composites using microwave sintering. Adv Compos Mater. 2021;30(3):271–285.
  • Gao X, Yue HY, Guo EJ, et al. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater Des. 2016;94:54–60.
  • Wang J, Guo LN, Lin WM, et al. Effect of the graphene content on the microstructures and properties of graphene/aluminum composites. New Carbon Mater. 2019;34(3):275–285.
  • Li G, Xiong BW. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites. J Alloys Compd. 2017;697:31–36.
  • Guan R, Wang Y, Zheng S, et al. Fabrication of aluminum matrix composites reinforced with Ni-coated graphene nanosheets. Mater Sci Eng A. 2019;754:437–446.
  • Rodiouchkina M, Lind J, Pelcastre L, et al. Tribological behaviour and transfer layer development of self-lubricating polymer composite bearing materials under long duration dry sliding against stainless steel. Wear. 2021;484-485:204027.
  • Hidalgo-Manrique P, Yan SJ, Lin F, et al. Microstructure and mechanical behaviour of aluminium matrix composites reinforced with graphene oxide and carbon nanotubes. J Mater Sci. 2017;52(23):13466–13477.
  • Zheng Z, Zhong SJ, Zhang XX, et al. Graphene nano-platelets reinforced aluminum composites with anisotropic compressive properties. Mater Sci Eng A. 2020;798:140234.
  • Li M, Gao HY, Liang JM, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Mater Charact. 2018;140:172–178.
  • Skvortsova AN, Mozhayko AA, Staritsyn MV. Composite materials based on aluminum with carbon nanofibers obtained by hot extrusion and rolling. Fuller Nanotub Carbon Nanostructures. 2022;30(1):156–159.
  • Jang JH, Han KS. Fabrication of graphite nanofibers reinforced metal matrix composites by powder metallurgy and their mechanical and physical characteristics. J Compos Mater. 2007;41(12):1431–1443.
  • Kwon H, Kurita H, Leparoux M, et al. Carbon nanofiber reinforced aluminum matrix composite fabricated by combined process of spark plasma sintering and hot extrusion. J Nanosci Nanotechnol. 2011;11(5):4119–4126.
  • Ogawa F, Masuda C. Fabrication of carbon nanofiber-reinforced aluminum matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition. Mater Res Express. 2015;2(1):015601.
  • Woo DJ, Heer FC, Brewer LN, et al. Synthesis of nanodiamond-reinforced aluminum metal matrix composites using cold-spray deposition. Carbon N Y. 2015;86:15–25.
  • Xue C, Yu JK, Zhu XM. Thermal properties of diamond/SiC/Al composites with high volume fractions. Mater Des. 2011;32(8–9):4225–4229.
  • Ahmad SI, Hamoudi H, Abdala A, et al. Graphene-Reinforced bulk metal matrix composites: synthesis, microstructure, and properties. Rev Adv Mater Sci. 2020;59(1):67–114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.