211
Views
0
CrossRef citations to date
0
Altmetric
Review

Overcoming challenges in using magnesium-based materials for industrial applications using friction-stir engineering

ORCID Icon, , , , &
Pages 1039-1049 | Received 01 Sep 2022, Accepted 10 Dec 2022, Published online: 22 Dec 2022

References

  • Suh B, Shim M, Shin KS, et al. Current issues in magnesium sheet alloys : where do we go from here? Acta Mater. 2014;85:1–6.
  • Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater. 1999;1:11–33.
  • Esmaily M, Svensson JE, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci. 2017;89:92–193.
  • Wang W, Han P, Peng P, et al. Friction stir processing of magnesium alloys: a review. Acta Metall Sin (English Lett). 2019;331: 43–57. [Internet]. 2019 [cited 2021 Nov 27]; 33. DOI:10.1007/s40195-019-00971-7
  • Lefebvre G. Relationship between microstructure, texture and ridging in ferritic stainless steels [Internet]. University of British Columbia; 2014 [cited 2021 Jan 19]. Available from: https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0165903
  • Kowalczyk K, Gambin W. Model of plastic anisotropy evolution with texture-dependent yield surface. Int J Plast. 2004;20:19–54.
  • Biswas A, Vajragupta N, Hielscher R, et al. Optimized reconstruction of the crystallographic orientation density function based on a reduced set of orientations reconstruction of the orientation density function. J Appl Crystallogr . 2020;53:178–187. DOI:10.1107/S1600576719017138
  • Klosek V. Crystallographic textures. EPJ web Conf; EDP Sciences; 2017.
  • Wang H, Zhang DT, Cao GH, et al. Improving room-temperature ductility of a Mg–Zn–Ca alloy through friction stir processing. J Mater Res Technol. 2022;17:1176–1186.
  • Luo X, Cao G, Zhang W, et al. Ductility improvement of an AZ61 magnesium alloy through Two-pass submerged friction stir processing. Materials (Basel). 2017;10(3):253.
  • Chaudry UM, Hamad K, Kim J. On the ductility of magnesium based materials : a mini review. J Alloys Compd. 2019;792:652–664. DOI:10.1016/j.jallcom.2019.04.031
  • Lentz M, Coelho RS, Camin B, et al. In-situ, ex-situ EBSD and (HR-)TEM analyses of primary, secondary and tertiary twin development in an Mg-4wt%Li alloy. Mater Sci Eng A. 2014;610:54–64.
  • Jiang L, Jonas JJ, Mishra RK, et al. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Mater. 2007;55:3899–3910.
  • Xin Y, Wang M, Zeng Z, et al. Tailoring the texture of magnesium alloy by twinning deformation to improve the rolling capability. Scr Mater. 2011;64:986–989.
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Reports. 2005;50(1-2):1–78.
  • Węglowski MS. Friction stir processing – state of the art. Arch Civ Mech Eng. 2018;18(1):114–129.
  • Gandra J MR, Vila P. Surface modification by friction based processes. Mod surf Eng treat [internet]. InTech. 2013. [cited 2021 May 9]. DOI:10.5772/55986
  • Patel V, Badheka V, Li W, et al. Hybrid friction stir processing with active cooling approach to enhance superplastic behavior of AA7075 aluminum alloy. Arch Civ Mech Eng. 2019;19:1368–1380.
  • Sharma S, Handa A, Singh SS, et al. Influence of tool rotation speeds on mechanical and morphological properties of friction stir processed nano hybrid composite of MWCNT-graphene-AZ31 magnesium. J Magnes Alloy. 2019;7:487–500.
  • Vijayavel P, Balasubramanian V, Rajkumar I. Effect of tool traverse speed on strength, hardness, and ductility of friction-stir-processed LM25AA-5% SiCp metal matrix composites. Metallogr Microstruct Anal. 2018;7:321–333. [cited 2021 May 10]
  • Vigneshkumar M, Padmanaban G, Balasubramanian V. Influence of tool tilt angle on the formation of friction stir processing zone in cast magnesium alloy ZK60/SiCp surface composites. Metallogr Microstruct Anal. 2019;8:58–66.
  • Rathee S, Maheshwari S, Siddiquee AN, et al. Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing. Def Technol. 2017;13:86–91.
  • Feng AH, Ma ZY. Enhanced mechanical properties of Mg-Al-Zn cast alloy via friction stir processing. Scr Mater. 2007;56:397–400.
  • Ma ZY, Pilchak AL, Juhas MC, et al. Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Scr Mater. 2008;58:361–366.
  • Wang C, Li F, Chen B, et al. Severe plastic deformation techniques for bulk ultra-fine-grained materials. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met Mater Eng. 2012;41:941–946.
  • Sabbaghian M, Mahmudi R. Microstructural evolution and local mechanical properties of friction stir processed Mg-3Gd-1Zn cast alloy. J Mater Eng Perform [Internet]. 2016;25:1856–1863. [cited 2021 Apr 20]. DOI:10.1007/s11665-016-2013-8
  • Peng J, Zhang Z, Liu Z, et al. The effect of texture and grain size on improving the mechanical properties of Mg-Al-Zn alloys by friction stir processing. Sci Rep. 2018;8:2–10. DOI:10.1038/s41598-018-22344-3
  • Margolin H, Stefan Stanescu M. Polycrystalline strengthening. Acta Metall. 1975;23:1411–1418.
  • Jain A, Duygulu O, Brown DW, et al. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet. Mater Sci Eng A. 2008;486:545–555.
  • Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 2003;51:2055–2065.
  • Shi BQ, Chen RS, Ke W. Influence of grain size on the tensile ductility and deformation modes of rolled Mg-1.02 wt. % Zn alloy. J Magnes Alloy. 2013;1:210–216.
  • Patel V, Li W, Wen Q, et al.. Homogeneous grain refinement and ductility enhancement in AZ31B magnesium alloy using friction stir processing. In: Joshi V, Jordon J, Orlov D, et al., editors. Magnesium technology. The minerals, metals & materials series. Cham: Springer; 2019. p. 83–87.
  • Tripathi A, Murty SVSN, Narayanan PR. Microstructure and texture evolution in AZ31 magnesium alloy during caliber rolling at different temperatures. J Magnes Alloy. 2017;5:340–347.
  • Wu J, Jin L, Dong J, et al. The texture and its optimization in magnesium alloy. J Mater Sci Technol Chinese Society of Metals. 2020: 175–189. [cited 2021 Apr 22]. DOI:10.1016/j.jmst.2019.10.010
  • Du Y, Zheng M, Qiao X, et al. Improving microstructure and mechanical properties in Mg-6 mass% Zn alloys by combined addition of Ca and Ce. Mater Sci Eng A. 2016;656:67–74. DOI:10.1016/j.msea.2016.01.034
  • Masoumi M, Hoseini M, Pekguleryuz M. The influence of Ce on the microstructure and rolling texture of Mg-1%Mn alloy. Mater Sci Eng A. 2011;528:3122–3129.
  • Stanford N. Micro-alloying Mg with Y, Ce, Gd and La for texture modification-A comparative study. Mater Sci Eng A. 2010;527:2669–2677.
  • Barnett MR. A taylor model based description of the proof stress of magnesium AZ31 during hot working. Metall Mater Trans A Phys Metall Mater Sci. 2003;34 A:1799–1806. [cited 2021 Jan 21]. DOI:10.1007/s11661-003-0146-5
  • Mackenzie LWF, Pekguleryuz MO. The recrystallization and texture of magnesium-zinc-cerium alloys. Scr Mater. 2008;59:665–668.
  • Ball EA, Prangnell PB. Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scr Metall Mater. 1994;31:111–116.
  • Al-Samman T, Li X. Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater Sci Eng A. 2011;528:3809–3822.
  • Ma ZY, Xiao BL, Yang J, et al. Friction stir processing: A novel approach for microstructure refinement of magnesium alloys. Mater Sci Forum. 2010;638–642:1191–1196. [cited 2022 Nov 15]. Available from: https://www.scientific.net/MSF.638-642.1191
  • Yuan W, Mishra RS. Grain size and texture effects on deformation behavior of AZ31 magnesium alloy. Mater Sci Eng A. 2012;558:716–724.
  • Shang Q, Ni DR, Xue P, et al. An approach to enhancement of Mg alloy joint performance by additional pass of friction stir processing. J Mater Process Technol. 2019;264:336–345.
  • Xu N, Song Q, Bao Y. {10−12} twinning assisted microstructure and mechanical properties modification of high-force fiction stir processed AZ31B Mg alloy. Mater Sci Eng A. 2019;745:400–403.
  • Yuan W, Panigrahi SK, Mishra RS. Achieving high strength and high ductility in friction stir-processed cast magnesium alloy. Metall Mater Trans A Phys Metall Mater Sci. 2013;44:3675–3684.
  • Bhargava G, Yuan W, Webb SS, et al. Influence of texture on mechanical behavior of friction-stir-processed magnesium alloy. Metall Mater Trans A Phys Metall Mater Sci. 2010;41:13–17.
  • Xie GM, Luo ZA, Ma ZY, et al. Superplastic behavior of friction stir processed ZK60 magnesium alloy. Mater Trans. 2011;52:2278–2281.
  • Huang Y, Wang Y, Meng X, et al. Dynamic recrystallization and mechanical properties of friction stir processed Mg-Zn-Y-Zr alloys. J Mater Process Technol. 2017;249:331–338.
  • Sunil BR, Reddy GPK, Patle H, et al. Magnesium based surface metal matrix composites by friction stir processing. J Magnes Alloy. 2016: 52–61. [cited 2021 Apr 27]. DOI:10.1016/j.jma.2016.02.001
  • Sharma V, Prakash U, Kumar BVM. Surface composites by friction stir processing: A review. J Mater Process Technol. 2015;224:117–134.
  • Mishra RS, Ma ZY, Charit I. Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A. 2003;341:307–310.
  • Parray MR, Khan NZ, Maqbool A. Fabrication and characterization of magnesium based surface composites with hybrid reinforcements by friction stir processing: a review. Mater Today Proc. 2021 [cited 2021 May 7]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214785321027966
  • Zeidabadi SR H, Daneshmanesh H. Fabrication and characterization of in-situ Al/Nb metal/intermetallic surface composite by friction stir processing. Mater Sci Eng A. 2017;702:189–195.
  • Chen CF, Kao PW, Chang LW, et al. Effect of processing parameters on microstructure and mechanical properties of an Al-Al11Ce3-Al2O3 in-situ composite produced by friction stir processing. Metall Mater Trans A Phys Metall Mater Sci. 2010;41:513–522. [cited 2022 Nov 19]. DOI:10.1007/s11661-009-0115-8
  • Barmouz M, Besharati Givi MK, Seyfi J. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure, microhardness, wear and tensile behavior. Mater Charact. 2011;62:108–117.
  • Srinivasu R, Sambasiva Rao A, Madhusudhan Reddy G, et al. Friction stir surfacing of cast A356 aluminium–silicon alloy with boron carbide and molybdenum disulphide powders. Def Technol. 2015;11:140–146.
  • Reddy GM, Rao AS, Rao KS. Friction stir surfacing route: effective strategy for the enhancement of wear resistance of titanium alloy. Trans Indian Inst Met. 2013;66:231–238. [cited 2022 Nov 19]. DOI:10.1007/s12666-013-0254-x
  • Houshyar M, Nourouzi S, Jamshidi Aval H. Friction stir processing of AA3105/SiC composites constructed through the sandwich method: The effects of FSP variables. Trans Indian Inst Met. 2021;74:429–438. [cited 2022 Nov 19]. DOI:10.1007/s12666-020-02172-8
  • Dinaharan I, Zhang S, Chen G, et al. Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing. Mater Sci Eng A. 2020;772:138793
  • Padmanaban G, Balasubramanian V. Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy – an experimental approach. Mater Des. 2009;30:2647–2656.
  • Azizieh M, Kokabi AH, Abachi P. Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater Des. 2011;32:2034–2041.
  • Morisada Y, Fujii H, Nagaoka T, et al. MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A. 2006;419:344–348.
  • Huang Y, Wang T, Guo W, et al. Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by direct friction stir processing. Mater Des. 2014;59:274–278.
  • Mertens A, Simar A, Adrien J, et al. Influence of fibre distribution and grain size on the mechanical behaviour of friction stir processed Mg-C composites. Mater Charact. 2015;107:125–133.
  • Balakrishnan M, Dinaharan I, Palanivel R, et al. Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing. J Magnes Alloy. 2015;3:76–78.
  • Huang Y, Li J, Wan L, et al. Strengthening and toughening mechanisms of CNTs/Mg-6Zn composites via friction stir processing. Mater Sci Eng A. 2018;732:205–211. DOI:10.1016/j.msea.2018.07.011
  • Li J, Huang Y, Wang F, et al. Enhanced strength and ductility of friction-stir-processed Mg–6Zn alloys via Y and Zr co-alloying. Mater Sci Eng A. 2020;773:138877. DOI:10.1016/j.msea.2019.138877
  • Dadaei M, Omidvar H, Bagheri B, et al. The effect of SiC/Al2O3 particles used during FSP on mechanical properties of AZ91 magnesium alloy. Int J Mater Res. 2014;105:369–374.
  • Dinaharan I, Zhang S, Chen G, et al. Assessment of Ti-6Al-4V particles as a reinforcement for AZ31 magnesium alloy-based composites to boost ductility incorporated through friction stir processing. J Magnes Alloy. 2022;10:979–992.
  • Qiao K, Zhang T, Wang K, et al. Effect of multi-pass friction stir processing on the microstructure evolution and corrosion behavior of ZrO2/AZ31 magnesium matrix composite. J Mater Res Technol. 2022;18:1166–1179.
  • Lee CJ, Huang JC, Hsieh PJ. Mg based nano-composites fabricated by friction stir processing. Scr Mater. 2006;54:1415–1420.
  • Azizieh M, Pourmansouri R, Balak Z, et al. The application of friction stir processing to the fabrication of magnesium-based foams. Arch Metall Mater. 2017;62:1957–1962.
  • Hangai Y, Utsunomiya T. Fabrication of porous aluminum by friction stir processing. Metall Mater Trans A Phys Metall Mater Sci. 2009;40:275–277.
  • Wen CE, Mabuchi M, Yamada Y, et al. Processing of biocompatible porous Ti and Mg. Scr Mater. 2001;45:1147–1153.
  • Wen CE, Yamada Y, Shimojima K, et al. Compressibility of porous magnesium foam: dependency on porosity and pore size. Mater Lett. 2004;58:357–360.
  • Hao GL, Han FS, Wu J, et al. Mechanical and damping properties of porous AZ91 magnesium alloy. Powder Metall. 2007;50:127–131.
  • Čapek J, Vojtěch D. Properties of porous magnesium prepared by powder metallurgy. Mater Sci Eng C. 2013;33:564–569.
  • Duarte I, Banhart J. A study of aluminium foam formation – kinetics and microstructure. Acta Mater. 2000;48:2349–2362.
  • Hangai Y, Ozeki Y, Utsunomiya T. Foaming conditions of porous aluminum in fabrication of ADC12 aluminum alloy die castings by friction stir processing. Mater Trans. 2009;50:2154–2159.
  • Kartika I, Risanti DD, Laksana HRP, et al. Fabrication of porous Mg–Ca–Zn alloy by high energy milling for bone implants. Lect Notes Electr Eng. 2021;746:711–722.
  • Xia X, Feng J, Ding J, et al. Fabrication and characterization of closed-cell magnesium-based composite foams. Mater Des. 2015;74:36–43.
  • Aghion E, Perez Y. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology. Mater Charact. 2014;96:78–83.
  • Robert Neu T, Mukherjee M, García-Moreno Helmholtz-Zentrum Berlin F, et al. Magnesium and magnesium alloy foams. 7th Int Conf Porous Met Met Foam [Internet]. 2011 [cited 2022 Aug 31]. Available from: https://www.researchgate.net/publication/285328627
  • Yang D, Hu Z, Chen W, et al. Fabrication of Mg-Al alloy foam with close-cell structure by powder metallurgy approach and its mechanical properties. J Manuf Process. 2016;22:290–296.
  • Azizieh M, Pourmansouri R, Balak Z, et al. The application of friction stir processing to the fabrication of magnesium-based foams. Arch Metall Mater. 2017;62:1957–1962.
  • Abbas A, Rajagopal V, Huang S-J. Magnesium metal matrix composites and their applications. In: Tański T, Jarka P, editors. Magnesium alloys structure and properties. London: Intechopen; 2022.
  • Riaz U, Shabib I, Haider W. The current trends of Mg alloys in biomedical applications – a review. J Biomed Mater Res Part B Appl. Biomater. John Wiley and Sons Inc.; 2019:1970–1996.
  • Witte F. Reprint of: The history of biodegradable magnesium implants: A review. Acta Biomater: Elsevier Ltd; 2015. p. S28–S40.
  • Ramalingam VV, Ramasamy P, Kovukkal MD, et al. Research and development in magnesium alloys for industrial and biomedical applications: a review. Met Mater Int. 2020: 409–430. [cited 2021 May 6]. DOI:10.1007/s12540-019-00346-8
  • Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 2007;369:1869–1875. [cited 2021 May 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/17544767/
  • Lim GB. Interventional cardiology: dreams of a bioabsorbable stent coming true. Nat Rev Cardiol. 2013;10(3):120. [cited 2021 May 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/23380977/
  • Schaller B, Saulacic N, Beck S, et al. In vivo degradation of a new concept of magnesium-based rivet-screws in the minipig mandibular bone. Mater Sci Eng C. 2016;69:247–254. [cited 2021 May 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/27612710/
  • Myrissa A, Braeuer S, Martinelli E, et al. Gadolinium accumulation in organs of Sprague–Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy. Acta Biomater. 2017;48:521–529. [cited 2021 May 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/27845277/
  • Kleer-Reiter N, Julmi S, Feichtner F, et al. Biocompatibility and degradation of the open-pored magnesium scaffolds LAE442 and La2. Biomed Mater. 2021;16(3). https://doi.org/10.1088/1748-605X/abf5c5
  • Song B, Li W, Chen Z, et al. Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction—A cadaveric experimental study. J Orthop Transl. 2017;8:32–39. Available from: /pmc/articles/PMC5987054/
  • Draxler J, Martinelli E, Weinberg AM, et al. The potential of isotopically enriched magnesium to study bone implant degradation in vivo. Acta Biomater. 2017;51:526–536. [cited 2021 May 6]. Available from: https://europepmc.org/article/med/28111338
  • Harwani D, Badheka V, Patel V, et al. Developing superplasticity in magnesium alloys with the help of friction stir processing and its variants – A review. J Mater Res Technol. 2021;12:2055–2075.
  • Furuya H, Kogiso N, Matunaga S, et al. Applications of magnesium alloys for aerospace structure systems. Mater Sci Forum. 2000;350:341–348.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.